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Multiple social encounters can eliminate Crozier’s
paradox and stabilise genetic kin recognition
Thomas W. Scott 1✉, Alan Grafen 1,2 & Stuart A. West 1,2

Crozier’s paradox suggests that genetic kin recognition will not be evolutionarily stable. The

problem is that more common tags (markers) are more likely to be recognised and helped.

This causes common tags to increase in frequency, and hence eliminates the genetic

variability that is required for genetic kin recognition. It has therefore been assumed that

genetic kin recognition can only be stable if there is some other factor maintaining tag

diversity, such as the advantage of rare alleles in host-parasite interactions. We show that

allowing for multiple social encounters before each social interaction can eliminate Crozier’s

paradox, because it allows individuals with rare tags to find others with the same tag. We also

show that rare tags are better indicators of relatedness, and hence better at helping indivi-

duals avoid interactions with non-cooperative cheats. Consequently, genetic kin recognition

provides an advantage to rare tags that maintains tag diversity, and stabilises itself.
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Kin selection theory predicts that, at all levels of biology,
from bacteria to humans, individuals should preferentially
cooperate with closer relatives1. Individuals are favoured to

help relatives because they share genes, and so by helping a
relative reproduce, an individual is still passing its genes to the
next generation, just indirectly. Closer relatives are more likely to
share genes, and so there is a greater indirect benefit from pre-
ferentially helping closer relatives. Individuals are therefore
expected to evolve kin discrimination, which is the conditional
helping of relatives that are identified (kin recognition) through
either genetic or environmental cues2.

It has become widely accepted that kin recognition via genetic
cues is not usually evolutionarily stable2–8. The problem is that
more common tags (markers) at the recognition locus are more
likely to be recognised8 (Fig. 1a). Consequently, individuals with
more common tags are more likely to be helped, increasing their
fitness. In contrast, individuals with rare tags are less likely to be
recognised and helped, reducing their relative fitness. This means
that common tags will increase in frequency, and rare tags will
decrease in frequency and be lost (Fig. 1b). Therefore, genetic kin
recognition eliminates the genetic variability that is required for
genetic kin recognition. This is Crozier’s paradox—genetic kin
recognition drives its own ruin8.

Crozier’s paradox provides the framework for the current
understanding of kin recognition. State-of-the-art population
genetic analyses have supported Crozier’s argument, finding
that genetic kin recognition is only stable under restrictive
conditions7,9. It has therefore been assumed that genetic kin
recognition will generally not be stable, and so kin discrimination
is constrained to be based on environmental cues, such as a song
learnt from relatives4–6,8,10,11. There are many examples of kin
recognition based on environmental cues, especially in birds and
mammals11–14. However, genetic kin recognition has also been
observed in a range of animals, microorganisms and plants15–22.
In these instances of genetic kin recognition, it has been assumed
that an additional factor unrelated to social behaviour is main-
taining variation at the tag locus, such as the advantage of rare
MHC alleles in host-parasite interactions4–8.

We hypothesise that Crozier’s paradox can be eliminated by
allowing for more natural forms of social behaviour, where
individuals can encounter multiple individuals before taking part
in a social interaction. Previous theory has assumed that, when an
individual encounters a partner with a different tag, the oppor-
tunity to socially interact is wasted4,7,8,23–26. In contrast, in many
animals where kin discrimination occurs, individuals can
encounter multiple individuals within their group or larger social

network before deciding who to help. For example, cooperatively
breeding vertebrates can choose which group to help at, or which
individuals to help in a group.

We show that, if multiple encounters occur before each
interaction, then individuals with rare tags can find individuals
with the same tag and receive as much help as individuals with
common tags. In Fig. 1a this is represented by the orange birds
finding and pairing up with other orange birds. Technically, this
means that common tags do not increase in frequency, as
assumed by Crozier’s paradox, and so genetic variability is not
eliminated at the recognition locus. In addition, we show that rare
tags are better indicators of relatedness, and hence better at
helping individuals avoid interactions with non-cooperative
cheats. This means that the process of genetic kin recognition
provides an advantage to rare tags that maintains tag diversity,
and stabilises itself.

Results and discussion
Multiple encounters. We model a scenario where individuals can
potentially encounter several other individuals before settling on
one to potentially help. We assume an infinite population of
haploids, partitioned into an infinite number of groups (infinite
island model). We ignore stochastic variation in the genetic
composition of groups, which is reasonable if there are a large
number of individuals (N) in each group. Each individual has a
recognition allele (tag). The maximum number of tags that may
simultaneously segregate in the population (genetic constraint) is
given by Lmax.

Individuals can potentially have many social encounters before
committing to a given social interaction. Each generation, each
individual encounters a random member of its group. If an
individual shares a tag with its partner, it interacts and potentially
helps—the social encounter becomes a social interaction. In
contrast, if an individual does not share a tag with its partner,
what happens depends upon the encounter parameter, α. With a
probability α, an individual with a tag-mismatched partner will
abandon that partner and re-associate for a new social encounter,
with a new individual drawn at random from its group (Fig. 2a).
With a probability 1−α, an individual with a tag-mismatched
partner remains with that partner, but it does not interact (the
opportunity to socially interact is wasted; Fig. 2a). Each time an
individual abandons a partner and re-associates for a new social
encounter, it pays a fecundity cost of csearch.

The encounter parameter, α, puts a form of individual agency
into the theory, by allowing individuals to search for another
individual with the same tag. When α= 1, individuals are free to
have encounters with all the other individuals in their group, if
need be, to find a tag-matched individual to interact with. In this
case, individuals with a rare tag will keep searching until they
encounter an individual with the same tag. At the other extreme,
when α= 0, any individual who does not encounter a tag-
matched individual on its first try does not get to initiate a social
interaction. Previous theory has implicitly considered the scenario
where α= 07,23–26.

We assume that, when an individual encounters a partner with
the same tag, it interacts and potentially helps. Whether an
individual helps depends upon its allele at the helping (trait)
locus. Individuals with the ‘conditional helping’ allele will help,
paying a fecundity cost of c to give a benefit of b to their social
partner. Individuals with the ‘defect’ allele do not help. We
assume that selection is weak (low magnitude of b and c).

After social interactions have taken place, haploid individuals
produce a very large number of gametes, before dying, where an
individual’s fecundity is given by how well it fared in social
interactions and its investment in partner search. Each gamete

Fig. 1 Crozier’s paradox. a Birds with a more common genetic tag (blue)
are more likely to encounter birds with the same tag, compared to birds
with a less common tag (orange). Consequently, blue birds are more likely
to be recognised and helped (arrows). b The blue tag will increase in
frequency, while the orange tag will decrease in frequency and be
eliminated (positive frequency dependence). Bird cartoons adapted from
Levin, Caro, Griffin & West, Evolution Letters (ref. 59), Creative Commons
(https://creativecommons.org/licenses/by/3.0/).
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has a 1−m probability of staying in its native group, and a m
probability of emigrating to a different, randomly chosen group.
Then, gametes fuse randomly within groups to produce diploid
zygotes, and this is followed immediately by meiosis, with
recombination between tag and trait loci occurring with
probability r, and mutation at the trait locus occurring with
probability µTrait. We do not allow mutation at the tag locus,
because we want to determine when selection can maintain tag
diversity. Finally, N haploid adults are sampled randomly from
the haploid juveniles to provide the members of the group in the
next generation (local competition), which completes the life-
cycle. We assume that conditional helping and tag diversity are
initially low, then iterate the lifecycle to find the equilibrium
frequency of the conditional helping allele and the equilibrium
tag diversity.

Stable genetic kin recognition. We find, in contrast to Crozier’s
prediction, and previous theory, that genetic kin recognition can
be maintained in a relatively large area of parameter space

(Fig. 2b). Kin discrimination based on genetic cues (tags) is
favoured when two conditions are met. First, kin discrimination
must be favoured by kin selection. By this, we mean that condi-
tional helping (help if matching tag) must have a higher fitness
payoff than both defection (never help) and indiscriminate
helping (always help, irrespective of tag). Second, rare tags must
be maintained in the population, so that there is sufficient genetic
diversity at the tag locus to allow genetic kin recognition.

Kin discrimination. Examining the first condition, kin dis-
crimination is favoured by kin selection when:

Rtagb� c� b� cð ÞRcomp > 0; ð1Þ

where Rtag is the relatedness between actors and their (tag-mat-
ched) social interactants, and Rcomp is the relatedness between
actors and the individuals who are displaced by competition
(derived in ‘Individual-level analysis (finding the right area of
parameter space)’)27–30. Here, relatedness technically means
genetic similarity at the trait locus, but at evolutionary

Fig. 2 Stable genetic kin recognition. a Social encounters and social interactions. If the focal individual encounters a tag-matched individual (both orange),
it socially interacts. Conversely, if the focal individual encounters a tag-mismatched individual (one orange; one blue), the focal individual may encounter a
new partner (α), or forgo the social search (1−α). Higher values of the encounter parameter (α) correspond to individuals having more encounters to find a
matching partner. During an interaction with a (tag-matched) partner, the focal individual may help or not (defect), depending upon its allele at the trait
locus. b We plot the results of our population genetic island model when encounters are unrestricted and uncostly (α= 1 & csearch= 0). The area under the
solid line shows where kin discrimination is favoured by kin selection (Eq. 1 satisfied). The data points show parameter combinations where kin
discrimination based on genetic cues is stable. These two areas match—whenever kin discrimination is favoured, sufficient tag diversity is maintained to
allow genetic kin recognition. We assumed µTrait= 0.001, b= 0.3, c= 0.1, Lmax= 100, α= 1, csearch= 0, N= 30. c An illustrative single trial from panel B
with: r= 0.08; m= 0.3. Rare tags become statistically associated with helping (linkage disequilibrium increases), which increases relatedness at the trait
locus above that expected from pedigree. Consequently, rare tags and helping increase in frequency. As rare tags increase in frequency, they lose their
statistical association with helping (linkage disequilibrium decreases), and relatedness at the trait locus converges on that expected from pedigree (see the
sections ‘Derivation of linkage disequilibrium’ and ‘Definitions of the four outputs plotted in Fig. 2c’; Supplementary Discussion 3). Bird cartoons adapted
from Levin, Caro, Griffin & West, Evolution Letters (ref. 59), Creative Commons (https://creativecommons.org/licenses/by/3.0/).
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equilibrium, this will usually be equal to the probability that
individuals share common ancestry (pedigree/genealogical relat-
edness; e.g., 1/2 for full siblings, 1/8 for cousins; Supplementary
Discussion 3)1,29,31.

Equation 1 is a form of Hamilton’s rule, showing that altruistic
helping based on kin discrimination is more likely to be favoured
if: helping is cheap to actors (lower c) and beneficial to recipients
(higher b); individuals reside in groups with a high variance in
relatedness, so that there are highly related individuals to help
(high Rtag), and poorly related individuals to avoid helping (low
Rcomp)1,27,32–35. If this Hamilton’s rule condition is not satisfied,
defection is favoured.

Maintaining tag diversity. Examining the second condition, we
found that, when individuals can search freely for social partners
at no cost (α= 1 & csearch= 0), tag diversity is maintained for the
same area of parameter space where kin discrimination is
favoured by kin selection (Fig. 2b; see ‘Model construction and
analysis’). This means that Eq. 1 also predicts when genetic kin
recognition will be stable. Our result contrasts with Crozier’s
prediction, where tag diversity is lost, meaning genetic kin
recognition is not stable.

In our model, genetic diversity at the tag locus is maintained by
coevolution between helping and kin recognition31. As tags
become more common, they will become less useful cues of the
individual’s common ancestry (pedigree relatedness; Supplemen-
tary Discussion 3), and so kin selection is less likely to favour the
helping of tag-matched individuals (Fig. 3). Consequently,
defection can invade at common tags (Fig. 3). In contrast, rare
tags will be good indicators of relatedness, and so kin selection
will favour the helping of tag-matched individuals. This means
that rare tags cannot be invaded by defectors. Technically, a
statistical association between genes for helping and rare tags
builds up (linkage disequilibrium; Fig. 3). Crozier’s original
statement of the paradox did not permit defectors, meaning
this coevolution between helping and kin recognition could
not be captured8,31. More recent models have permitted
defectors5,7,23–26.

The consequence of this coevolution is that individuals with
rare tags will have a greater average payoff from social
interactions, meaning rare tags increase in frequency, maintaining
tag diversity (negative frequency dependence)31. This prediction
is in the opposite direction to Crozier’s paradox, where common
tags were favoured, except under restrictive conditions (positive
frequency dependence)4,7,8,23–26. Our conclusions still tended to
hold when we relaxed the assumptions of infinite population size
and weak selection, and allowed the genetic composition of
groups to vary stochastically (see ‘Finite population (agent-based)
simulation’)9,36,37.

Encounter rate and search cost. As the encounter parameter (α)
decreases, or the search cost parameter (csearch) increases, the area
where genetic kin recognition is stable is reduced (Figs. 4 and 5).
When α= 1 & csearch= 0, there is negligible cost to having a rare
tag, because individuals have multiple uncostly encounters until
they find another individual with a matching tag. As α decreases,
individuals with rare tags become relatively less likely to find an
individual with a matching tag, favouring common tags, as
suggested by Crozier. As csearch increases, individuals with rare
tags incur a relatively higher search cost on their way to
finding another individual with a matching tag, also favouring
common tags.

As the encounter parameter (α) decreases, there is a decrease in
the likelihood that genetic kin recognition is stable (Fig. 4c).
Consequently, a high value of this encounter parameter (α) is

required for genetic kin recognition to evolve. At this point, we
need to think about what our encounter parameter (α) is
capturing. Our use of the encounter parameter (α) assumes that
individuals search randomly and with replacement, to make our
model mathematically tractable. In nature, the search for
potential partners could be more efficient, by focusing on
individuals not previously encountered and by searching where
relatives are more likely to be encountered, based upon
environmental or spatial cues. Our model allows us to
conceptually capture these more realistic scenarios if we think
about how the encounter parameter (α) determines the likelihood
with which individuals can find another individual with the same
tag. As α decreases, individuals become less likely to encounter
another individual with the same tag, especially if the individual is
using a rare tag (Fig. 4d).

Different species would correspond to different likelihoods of
being able to find another individual with the same tag, and hence
different values of α. At one extreme, in many cooperatively
breeding birds and mammals, individuals are likely to be able to
find another individual with the same tag to interact with. This
corresponds to a high α, possibly even α ≈ 1. The reason for this is
that individual animals: (a) can move around and choose who to
help; and (b) live in family groups, within spatially structured
populations, and so will encounter close relatives, who are likely
to share the same tag. The probability of finding an individual
with the same tag could be increased by a number of ‘non-
random’ behaviours, such as using spatial or environmental cues
to streamline the search.

In other organisms, such as bacteria, limited dispersal can
still make encounters with relatives likely, but individuals have
less ability to move around and choose who to interact with,
and so α could be lower. When searching for partners is relatively
cheap (low csearch), and individuals are using a limitingly rare
tag, the probability of social interactions often needs to
drop significantly below 1.0 before genetic kin recognition is
likely to be less favoured (Fig. 4e). Therefore, although the
stability of genetic kin recognition is susceptible to a drop off in
the mathematical encounter parameter (α), a biological inter-
pretation of our mathematical parameter—as a proxy for the
probability of socially interacting—implies that genetic kin
recognition could evolve relatively permissively, as long as the
risk of foregoing social interactions whilst using a rare tag is
relatively low.

In addition, the influence of a decrease in the encounter
parameter (α) is reduced by strong selection. Our theoretical
results were derived for the case where the strength of selection
on social behaviour, captured by the magnitude of c and b, is low
(weak selection). We focused on the weak selection case because it
is the most likely scenario in animals, where behaviours are
generally underpinned by many genes of small effect. However,
selection on social behaviour may be stronger in bacteria and
other microorganisms, where one or a few genes of large effect
may underpin social behaviours like the production of public
goods such as iron-scavenging molecules (siderophores)38. In the
case where selection is strong: genetic kin recognition is
sometimes stable even when there is no chance for multiple
encounters (α= 0)7. Although, an increase in the encounter
parameter (α) still increases the strength of balancing selection on
tags, and therefore increases the likelihood that genetic kin
recognition is stable (Fig. 4f; see ‘Finite population (agent-based)
simulation’).

The search cost (csearch) is incurred every time an individual
abandons a partner and re-associates for a new social encounter.
Consequently, the total search cost can be much higher than
csearch. For limitingly rare tags under conditions of limitingly low
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relatedness, the total search cost will be αcsearch
1�α . The search cost can

capture many different things empirically, such as an increased
predation risk whilst out searching for a social partner, or a loss of
time that could be spent doing other things like foraging for food.
Although an increased search cost reduces the area of parameter
space for which genetic kin recognition is stable, this effect is

relatively minor, and genetic kin recognition can still be stable
with an appreciable partner search cost (Fig. 5). For instance,
when csearch ¼ 0:009; c ¼ 0:1; α ¼ 0:999, genetic kin recognition
is still stable in over half of the parameter space where kin
discrimination is favoured by kin selection (for biologically
reasonable parameter evaluations and weak social selection;

Fig. 3 Advantage for rare tags. a For birds with rare tags (orange), the probability of matching tags with someone (proportion shaded) is given by pedigree
relatedness. For birds with common tags (blue), the probability of matching tags with someone (proportion shaded) is always high, regardless of pedigree
relatedness. More common tags are therefore worse indicators of both relatednesses at the trait locus and pedigree relatedness. b An illustrative single
trial, with two tags (blue and orange). The solid lines show tag frequency and the dotted lines show the probability above the population average that a
social interaction results in help being received (tag excess helping) (see ‘Definition of tag excess helping plotted in Fig. 3b’). The initially rare tag (orange)
is a better indicator of relatedness, and as a result, it gains extra helpers (orange dotted line increases) relative to the initially common tag (blue dotted line
decreases) (linkage disequilibrium). This causes the rare (orange) tag to increase in frequency (orange solid line increases), and the common (blue) tag to
decrease in frequency (blue solid line decreases). As the orange tag increases in frequency, it loses its extra helpers (dotted lines tend to zero), and the
fitness of the two tags converge. We assumed Lmax= 2, µTrait= 0.0001, b= 0.015, c= 0.005, α= 1, csearch= 0, m= 0.3, r= 0.1, N= 30. Bird cartoons
adapted from Levin, Caro, Griffin & West, Evolution Letters (ref. 59), Creative Commons (https://creativecommons.org/licenses/by/3.0/).
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Fig. 5a). In this case, the total search cost for limitingly rare
tags under low relatedness would be nine times higher than the
cost of helping (0.9 versus 0.1). The search cost (csearch) has a
smaller influence because as it increases, it does not reduce the
likelihood of receiving help (compared to when α decreases),
and so rare tags still gain an appreciable benefit (see ‘Full

analysis (solving the model)’). Furthermore, if the partner search
rate (α) is reduced, the partner search cost (csearch) has even less of
a destabilising effect, simply because the search cost will be paid
less often (Fig. 5b). However, if the search cost (csearch) is
increased high enough, kin recognition will eventually be
destabilised.
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Alternative scenarios and genetic architecture. A difference
between ours and previous theory is that we show how high levels
of both conditional helping and tag diversity can be maintained
relatively easily, without tag mutation, strong selection on social
behaviour, or additional selection pressures unrelated to social
behaviour. Previous studies found that, in general, tag diversity
could not be maintained by selection on social behaviour alone,
recovering Crozier’s paradox4,7,23–26. These previous studies did
find restrictive conditions where kin discrimination based on
genetic cues could evolve, but it was characterised by relatively
low levels of both conditional helping and tag diversity (Supple-
mentary Discussion 1). In addition, our theory modelled a rela-
tively unfavourable scenario for genetic kin recognition, and so
our finding that it can be stable may be conservative. In parti-
cular, we assumed: an island model with extreme local competi-
tion for resources7,27,28,33,35; no tag mutation; conditional helping
is a discrete (all or nothing) trait, where cheating can be purged
by selection; and that encounters are not restricted to individuals
yet to have a social interaction (Supplementary Discussion 2).

A possible alternative solution to Crozier’s paradox is if the
recognition alleles have an additional role unrelated to social
behaviour that maintains tag diversity. In such cases, negative
frequency dependence could arise from selection acting on the
recognition alleles’ additional role, rather their role in social
behaviour5,7,8. For instance, if recognition alleles are also MHC
alleles, negative frequency dependence may arise because rare
MHC alleles fare better in host-parasite interactions4–8. Alter-
natively, if recognition alleles are also mate-choice tags, negative

frequency dependence may arise because rare genetic mating cues
are more reliable indicators of inbreeding5. These resolutions
need not, in principle, be mutually exclusive, and could even act
concordantly, with selection on social behaviour combining with
extrinsic forces to increase the overall level of balancing selection
at the recognition locus. However, there are possible complica-
tions, such as host-parasite coevolution leading to fluctuating
allele frequencies, and it has yet to be shown that natural selection
would ‘choose’ a locus under extrinsic balancing selection for a
kin recognition tag, as opposed to a locus that was otherwise
neutral. Formal theoretical modelling is required to examine the
consequences of allowing the genetic architecture to evolve.

Empirical implications. To conclude, our findings have four
implications for empirical research. First, the hunt for alternative
factors to maintain tag diversity in species with genetic kin
recognition, such as host-parasite interactions, may not be
necessary3–5,7,17,39. We have shown how genetic kin recognition
can maintain the tag diversity that it requires, without any other
factor. Second, our theory emphasises the need to measure the
frequency with which individuals have social encounters with
other individuals (Fig. 4d). When this frequency is high, corre-
sponding to a high α, genetic kin recognition is more likely to be
stable. Third, Eq. 1 can explain the variation that has been
observed in the extent of kin discrimination across cooperatively
breeding birds and mammals. Kin discrimination is greater in
species where helping provides a greater benefit, and where
relatedness within groups is more variable10,11.

Fig. 4 Social encounter rate. a and b show when genetic kin recognition is stable. The area under the solid line shows where kin discrimination is favoured
by kin selection (Eq. 1 satisfied). The data points show where, for a given value of α, kin discrimination based on genetic cues is stable. c, e The Y axis
represents the area of parameter space where kin discrimination based on genetic cues is stable for a given value of α, divided by the area it is stable when
α= 1. c As the encounter parameter (α) decreases, the area where genetic kin recognition is favoured decreases. d As the encounter parameter (α)
increases, the per-generation probability of encountering and interacting with a tag-matched individual increases. The different lines represent different
population tag frequencies (~0, 0.1, 0.2). e As the probability of a social interaction increases, the area where genetic kin recognition is favoured also
increases. f The Y axis represents the time taken for tag diversity to be lost, relative to the neutral scenario (no selective effects), in a finite-population
model where social selection (b,c) is strong. This increases with population size, and the increase is steeper for higher α, indicating that the strength of
balancing selection at the recognition locus increases with the encounter parameter. We assumed: csearch= 0; a–e µTrait= 0.001, b= 0.3, c= 0.1,
Lmax= 100, N= 30; kin discrimination based on genetic cues is stable when >10 tags maintained and helping frequency >0.4; e tag frequency ~0;
f μTrait= 0.005, b= 4.5, c= 0.5, Lmax= 2, N= 7, m= 0.01, r= 0.01.

Fig. 5 Search cost. Panel a shows when genetic kin recognition is stable. The area under the solid line shows where kin discrimination is favoured by kin
selection (Eq. 1 satisfied). The data points show where, for a partner search cost of csearch= 0.0009 and encounter parameter of α= 0.999, kin
discrimination based on genetic cues is stable. b The Y axis represents the area of parameter space where kin discrimination based on genetic cues is
stable for given values of csearch & α, divided by the area it is stable when csearch= 0 & α= 1. As the search cost (csearch) increases, the area where genetic kin
recognition is favoured drops off relatively slowly, especially when α is lower. We assumed: µTrait= 0.001, b= 0.3, c= 0.1, Lmax= 100, N= 30; kin
discrimination based on genetic cues is stable when >10 tags maintained and helping frequency >0.4.
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Finally, there is a need to develop and test adaptive hypotheses
for variation across species in whether environmental or genetic
cues are used for kin discrimination. It had been concluded that
the use of environmental cues represents the ‘best of a bad job’,
on the grounds that Crozier’s paradox prevents the use of genetic
cues10,11. Instead, our results suggest that we need to examine the
relative costs and benefits of using different sorts of cues. Genetic
cues could be more likely to be favoured when there is greater
opportunity for multiple low-cost social encounters (higher α &
lower csearch), for instance, when social groups are more compact
(dense social networks). Environmental cues could be less likely
to be favoured when they are less reliable, for instance, when: (i)
there is high promiscuity, meaning ‘sibling’ becomes a less
reliable cue of relatedness; (ii) offspring have less opportunity to
learn cues of relatedness, such as when there are low or non-
existent parental/offspring associations. Theory investigating
different scenarios will allow us to explain the vast diversity of
kin recognition systems observed across the natural world.

Methods
We develop a theoretical model to track the evolution of genetic kin recognition,
and examine the theoretical viability of Crozier’s paradox. The ‘Methods’ section is
organised as follows. In ‘Background’, we briefly go over the key conceptual issues
that crop up throughout our analyses: Crozier’s paradox, Grafen’s linkage dis-
equilibrium, partner search and kin selection. In ‘Model assumptions’, we list our
model assumptions, and in ‘Model construction and analysis’, we construct and
analyse the model. In ‘Additional definitions and derivations’, we give mathema-
tical definitions and derivations for the summary statistics plotted in Figs. 2 and 3.

Background
Crozier’s paradox. Crozier argued that genetic kin recognition will often be evo-
lutionarily unstable8. The argument is that more common tags are more likely to be
recognised and helped than rare tags, generating positive frequency dependence at
the tag locus, and resulting in a loss of tag diversity, destabilising kin recognition
(Fig. 1).

Grafen’s linkage disequilibrium. Grafen suggested that Crozier’s paradox could be
solved by coevolution between helping and kin recognition31. Specifically, as tags
become more common, they will become less useful cues of relatedness, and so can
be invaded by non-cooperative cheats. Rare tags will be good indicators of relat-
edness, preventing invasion by cheats (Fig. 3). Technically, a statistical association
between genes for helping and rare tags will build up (linkage disequilibrium). This
leads to individuals with rare tags having greater payoffs from social interactions.
Grafen argued that this advantage for rare tags (reduced risk of being cheated)
could exceed Crozier’s advantage for common tags (increased chance of being
recognised and helped), meaning rare tags gain an overall advantage, maintaining
tag diversity.

However, a problem with this argument is that linkage disequilibrium is
constantly broken down by direct selection at the tag locus (for increased social
interaction rate) and recombination. As a result, linkage disequilibrium may not be
strong enough to give rare tags an overall advantage. This was confirmed in a
mathematical analysis by Rousset and Roze7. They found that, except in restrictive
(biologically unnatural) scenarios, Grafen’s linkage advantage for rare tags is less
than Crozier’s advantage for common tags, meaning tag diversity is lost.

Partner search. We hypothesise that more realistic forms of social interactions
create forces that maintain genetic diversity at a tag (matching) locus, and so
eliminate Crozier’s paradox. Specifically, if individuals can have multiple
encounters, testing out each individual, before settling on one tag-matched social
partner, then individuals with rare tags can be recognised as much as individuals
with common tags. Technically, this means that Crozier’s advantage for common
tags (increased opportunity to be recognised and helped) would be minimised or
eliminated. As a result, Grafen’s advantage for rare tags (less chance of being
cheated), even if weak, could dominate, giving rare tags an overall advantage,
maintaining tag diversity.

Kin selection. We hypothesise that kin discrimination based on genetic cues may
only evolve in the region of parameter space where it is favoured by individual-level
selection (kin selection)26. Previous theory has not always restricted itself to this
area, and hence, in some cases, has been searching for kin discrimination
in situations where either indiscriminate helping or indiscriminate defection is
favoured. However, a failure to find genetic kin recognition in these situations is
expected from kin selection theory. We will explicitly derive the regions of para-
meter space where kin discrimination is favoured by kin selection, and search for
genetic kin recognition in these regions.

Our hypothesis is that genetic kin recognition will evolve if two conditions are
met: (1) kin discrimination is favoured by individual-level kin selection (it confers
greater inclusive fitness returns than both indiscriminate helping and
indiscriminate defection); (2) individuals can engage in sufficiently many social
encounters before committing to a given social interaction (essentially “trying out”
multiple individuals to see if any are tag-matched, before having to commit to a
social interaction with one of them).

Model assumptions
Tag & trait loci. We assume an infinite population of individuals and that, at the
start of each generation, individuals are haploid. Each individual encodes a given
phenotype (tag). Tags are recognised by other individuals, and distinguishable.
There are Lmax possible tags, and each tag is encoded by a specific allele at the ‘tag
locus’ (Lmax possible alleles at the tag locus). Lmax therefore gives the upper bound
on the number of tags that can be distinguished between (‘tag availability’). This
upper bound (Lmax) is set by the efficacy of the sensory system responsible for
recognising the tags (evolutionary constraint). More sophisticated sensory systems
will be capable of reliably distinguishing between greater numbers of tags (higher
Lmax). Each allele at the tag locus is denoted by a number, i, within the set i∈ {1,
2,…, Lmax}. At a given point in time, the number of segregating tags (i.e. number of
tags present at non-zero population frequency) is denoted by L (1 ≤ L ≤ Lmax). At
equilibrium, the number of segregating tags is denoted by L* (L tends to L* in the
evolutionary long term).

Each individual also adopts a given ‘trait’, which dictates how it behaves in
social interactions. There are two possible traits, and each trait is encoded by a
specific allele at the ‘trait locus’ (2 possible alleles at the trait locus). Trait allele ‘1’
encodes (conditional) helping and trait allele ‘0’ encodes defection. In addition to
conditional helping and defection, there is a third possible trait phenotype—
indiscriminate helping (help everyone). However, for simplicity, we do not
explicitly track an indiscriminate helping allele at the trait locus. Instead, we note
that the ‘indiscriminate helping’ phenotype can still evolve in our model, if tag
diversity is lost (one tag goes to fixation) and the conditional helping allele goes to
fixation.

Genotype frequency notation. The population frequency of conditional helpers
bearing a given tag i is denoted by xi1. The population frequency of defectors
bearing a given tag i is denoted by xi0. The overall population frequency of a given
tag i is given by xi1+ xi0, and denoted by xi. The proportion of individuals bearing
a given tag (i) that are helpers (‘helper proportion’) is given by xi1/xi, and denoted
by pi. The proportion of individuals bearing a given tag (i) that are cheaters
(‘cheater load’) is therefore given by 1−pi.

Social encounters and interactions. For each individual, in each generation, we
define an ‘interaction group’. This is the group of neighbours with whom the
individual is close enough to socially interact with40. Social interactions are pair-
wise and asymmetrical, comprising one actor (who may give help) and one reci-
pient (who may receive help).

Each individual has one ‘social search’ per generation. In a given social search, a
focal individual encounters a random member of its interaction group (partner). If
the focal individual and its partner share the same tag, they interact, with the focal
individual potentially giving help (actor) and its partner potentially receiving help
(recipient)—the social encounter becomes a social interaction (successful social
search).

In contrast, if the focal individual and its partner do not share the same tag,
what happens depends upon the search parameter, α. With a probability α, the
focal individual abandons its tag-mismatched partner and re-associates for a new
social encounter, with a new partner drawn at random from its interaction group
(with replacement of previously encountered individuals) (Fig. 2a). With a
probability 1−α, the focal individual remains with its tag-mismatched partner, but
they do not interact—the opportunity to socially interact is wasted (failed social
search).

We reiterate that a given individual has one social search per generation,
meaning it socially interacts as an actor either once (successful social search) or
zero (failed social search) times per generation. However, a given individual may be
chosen once, zero or multiple times per generation, by other individuals on their
social searches. A given individual may therefore socially interact as a recipient
once, zero or multiple times per generation.

When α= 1, individuals are free to have encounters with all the other
individuals in their interaction group, if need be, to find a tag-matched individual
to interact with. In this case, even individuals with a rare tag are still likely to
interact with another individual with the same tag. At the other extreme, when
α= 0, any individual who does not encounter a tag-matched individual on its first
try does not get to engage in a social interaction, and so population tag frequency
will determine the rate of interaction.

We assume that searching for partners is costly. Specifically, each time an
individual abandons a social partner for a new social encounter, it pays a fecundity
cost of csearch.

Cooperative game. For each social interaction, which comprises pairs of individuals
sharing the same tag, there is one actor and one recipient. The actor and recipient
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play a (nonreciprocal) cooperation game. Actors provide help if they have the
conditional helping allele, suffering a fecundity cost of c to give a benefit of b to the
recipient. Actors do not help if they have the defection allele. Recipients never help.
There is a net benefit to helping (b > c).

Mutation. We include the possibility for mutation at the tag and trait loci. We
assume that, each generation, trait mutation occurs with probability μTrait, and tag
mutation occurs with probability μTag. However, we assume, except where speci-
fied, that there is no mutation at the tag locus (μTag= 0). We make this assumption
because tag mutation can maintain tag diversity even when it is disfavoured by
selection, leading to spurious (non-adaptive) kin recognition. In general, we are
interested in when selection maintains tag diversity.

Assigning interaction groups. In this (island) model, the population is split into
distinct physical groups of individuals (demes) of size N, and social interactions
take place amongst individuals on the same deme. Therefore, for each individual, in
each generation, the interaction group comprises the N− 1 other individuals (i.e.
discounting themselves) on the deme.

We note that the mathematical model we construct in ‘Model construction and
analysis’ is only completely accurate for the cases where α= 0 and/or N=∞, and
accuracy in the α > 0 case is reduced as deme size (N) is reduced. However, in the
‘Finite population (agent-based) simulation’ section, we verify using agent-based
simulation that the results of the mathematical model tend to hold even for small
deme sizes (N). The reason why our mathematical model is only accurate for the
α= 0 and/or N=∞ case is that, for analytical tractability, we do not account for
stochasticity in the genetic composition of demes. However, some stochasticity will
arise whenever demes are finite, and stochasticity will matter (affect evolution)
whenever individuals can have multiple social encounters before each social
interaction (α > 0). More discussion of this can be found under the “Relation to
Rousset and Roze7” heading below, and in the ‘Finite population (agent-based)
simulation’ section.

Lifecycle. We assume an infinite population of haploids, partitioned into
demes9,28,41,42. At the beginning of the lifecycle, each deme has N haploid indi-
viduals. Firstly, haploid individuals have the opportunity to socially interact, as
detailed under the “Social encounters and interactions” heading above. Next,
haploid individuals produce a very large number of gametes, before dying, where
an individual’s fecundity is given by how well it fared in social interactions and its
investment in partner search. Each gamete has a 1−m probability of staying in its
native deme, and a m probability of emigrating to a different, randomly chosen
deme. Then, gametes fuse randomly within demes to produce diploid zygotes, and
this is followed immediately by meiosis, with recombination between tag and trait
loci occurring with probability r. The haploid juveniles undergo mutation, as
detailed under the “Mutation” heading above. Finally, N haploid adults are sampled
randomly from the haploid juveniles in each deme (population regulation occurs at
the deme, or ‘local’, level). This completes the lifecycle.

Relation to Rousset and Roze7. Our lifecycle assumptions are almost identical to
those taken by Rousset and Roze (henceforth: R&R). However, there are three
differences.

Firstly, R&R assumed that a social encounter with a tag-mismatched partner
never results in a social interaction (no partner search). We, on the other hand,
allow for multiple social encounters before each social interaction, meaning an
initial encounter with a tag-mismatched partner could still ultimately result in a
social interaction, if the tag-mismatched partner is abandoned and the focal
individual successfully re-associates with a tag-matched partner. In other words, in
our model, but not in R&R, partner search is permitted. We hypothesise that this
model generalisation will facilitate the evolution of genetic kin recognition. We
note that R&R’s case (no partner search) is recovered in our broader framework for
the special case where partner search is absent (α= 0).

Secondly, R&R placed no restrictions on deme size (N). However, in our model,
when there is partner search (α>0), our model is only accurate for the case where
deme size (N) is infinite, with reduced accuracy as deme size (N) decreases. This
inaccuracy arises because, for analytical tractability, we account for repeat social
encounters (α>0) in a deterministic modelling framework, without accounting for
stochastic effects. To appreciate this, note that, if demes are small (small N), each
deme will only comprise a subset of the genetic variation (genotypes) present in the
wider population. This means that, if an individual abandons a tag-mismatched
partner in search of a tag-matched partner to socially interact with, whether or not
it ends up with a tag-matched social partner will depend, not only on the genotypes
present in the population, but also on stochastic effects—namely, whether the
individual happens to have entered into a deme that comprises someone else with
the same tag. Conversely, if demes are large (high N), every genotype present in the
population is also likely to be present in every deme in the population. This means
that the outcome of partner search can be largely determined with sole reference to
population-wide characteristics (demographic parameters and population genotype
frequencies). We focus on such population-wide characteristics, and ignore the
stochastic variation in deme composition associated with low deme size (N). This
means that our model is only technically accurate for the case where there is no
partner search (α= 0), or where there is no stochastic variation in the genetic

composition of demes (N=∞). Having said that, in ‘Finite population (agent-
based) simulation’, we verify using an agent-based simulation that our theoretical
results still tend to hold even when stochasticity in deme composition is
incorporated and deme size (N) is low.

Thirdly, R&R assumed that each individual has N−1 social encounters each
generation, one with each other member of its deme, and that the fecundity benefit
and cost of helping are respectively given by b/(N−1) and c/(N−1). We, on the
other hand, assume that each individual, in its social search, initiates one
(replaceable, if the social partner is abandoned to obtain a new one) social
encounter per generation, with an individual drawn randomly (discounting itself)
from its deme, and that the fecundity benefit and cost of helping are respectively
given by b and c. We note that the alternative conceptualisations are
mathematically equivalent under our assumptions of small b & c (weak selection)
and no stochastic deme variation9. In both cases: the total fecundity of all
individuals sharing a common genotype is the same; the maximal generational
fecundity benefit and cost to an individual is the same (and given by b and c).
However, the reason why we have adopted a slightly different conceptualisation to
R&R is that our conceptualisation extends more naturally to the scenario where
individuals can search for social partners.

Model construction and analysis. We now mathematically formulate and analyse
our model. We do so gradually, taking the following steps:

(a) Constructing the model. We write equations to describe how genotype
frequencies change every generation due to: (i) selection; (ii) recombination;
(iii) mutation. We combine these equations (i, ii, iii) to obtain recursions
describing how genotype frequencies change across a generation. For
simplicity, we assume that selection and mutation are weak (of low
magnitude), population size is infinite, and there is no stochastic variation in
the genetic composition of demes (a reasonable assumption if deme size, N,
is large).

(b) Individual-level analysis (finding the right area of parameter space). We
derive coefficients of relatedness (Rtag, Rcompetitor), which allows us to
formulate a condition, based on Hamilton’s rule, to show when kin
discrimination (help relatives) confers greater fitness returns than
indiscriminate defection (never help) and indiscriminate helping (help
everyone), meaning it is favoured by an actor striving to maximise its
inclusive fitness1. This is the area of parameter space where we should look
for genetic kin recognition.

(c) Full analysis (solving the model). We numerically solve our model to see
what genotype frequencies arise at equilibrium. This allows us to examine
whether natural selection can maintain genetic variability at the tag locus,
alongside conditional helping, and hence allow kin discrimination based on
genetic cues to evolve and be stable.

(d) Finite population (agent-based) simulation. We check if our theoretical
results still hold when selection and mutation are stronger, the population is
finite, and the genetic composition of demes vary realistically
(stochastically).

(e) Key points and implications.

Constructing the model. Based on our lifecycle assumptions (see ‘Model
assumptions’), we write a recursion to describe how the population frequency of a
given genotype changes across a generation. Specifically, we write three equations,
partitioning the respective effects of selection, recombination and mutation, on
genotype frequency change. We assume that: (1) Selection takes the frequency of a
genotype (ij) from xij to xij′, where i gives tag identity, and j gives trait identity, with
j= 1 for a conditional helper and j= 0 for a defector. (2) Recombination takes
genotype frequency from xij′ to xij′′. (3) Mutation takes genotype frequency from
xij′′ to xij′′′. We partition our model in this way—as three successive equations—
because the logic behind our model is clearer when the effects of selection,
recombination and mutation are presented in isolation from each other. Taken
together, the equations give a ‘recursion’, describing the change in frequency of a
genotype (ij) from one generation (xij) to the next (xij′′′).

We note that the selection equation comprises the consequences of both
reproduction, which occurs at the start of the lifecycle (before recombination and
mutation), and competitive displacement (population regulation), which occurs at
the end of the lifecycle (after recombination and mutation). In an iterative
evolutionary process, in which one generation follows seamlessly from the next, the
“start” of one generation follows the “end” of the previous generation. For this
reason, we are justified in our decision to “move” competitive displacement from
the end of the generation to the start, to consider it alongside reproduction in a
single “selection” equation.

We construct the selection equation first, followed by the recombination
equation, and finally the mutation equation. The selection equation is most
cumbersome to construct, and must be done in multiple stages, in which higher-
level variables are written in terms of increasingly low-level, mechanistic variables,
until the equation is specified solely in terms of fundamental model parameters
(dynamic sufficiency43,44).
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Selection (high-level expressions). We construct our selection equation in stages
from high-level to low-level details. Before doing so, we go over some features of
our lifecycle again, this time with a slightly different emphasis, so that the relation
between the verbal lifecycle description, and the algebraic model we are about to
construct, is clear.

First, we reiterate that social interactions are pairwise and asymmetrical, with
one actor potentially giving help, and one recipient potentially receiving help (see
‘Model assumptions’). Every generation, each individual has one social search,
culminating in one opportunity to socially interact as the actor. For each
opportunity, an individual may engage in a series of social encounters (partner
search), before finally settling on an “ultimate partner”. This ultimate partner is
either tag-matched, resulting in social interaction (where the focal individual is the
actor, and its ultimate partner is the recipient), or tag mismatched, resulting in no
social interaction (missed opportunity).

We now explicitly define a few probabilities. Minteract is the per-generation
probability that a given individual engages in a social interaction as the actor (i.e.
obtains a tag-matched ultimate partner). Mind_helped is the expected number of
times per-generation that a given individual receives help (i.e. is chosen as a tag-
matched helper’s ultimate partner). Mdeme_helped is the expected number of times
per-generation that a random individual drawn from the focal individual’s deme
(i.e. not necessarily, but possibly, the focal individual) receives help (i.e. is chosen as
a tag-matched helper’s ultimate partner). Mpop_helped is the expected number of
times that a random individual drawn from a different deme to the focal individual
receives help (i.e. is chosen as a tag-matched helper’s ultimate partner).
Mind_abandon is the expected number of times per social search (i.e. per-generation)
that a given individual abandons its social partner for a new social encounter.
Mdeme_abandon is the expected number of times per social search (i.e. per-
generation) that a random individual drawn from the focal individual’s deme
abandons its social partner for a new social encounter. Mpop_abandon is the expected
number of times per social search (i.e. per-generation) that a random individual
drawn from a different deme to the focal individual abandons its social partner for
a new social encounter.

Mpop_helped and Mpop_abandon are the same for each individual in the population,
regardless of the individual′s tag or trait identity—that is, having a particular tag or
trait does not affect the likelihood that a random individual drawn from a non-
native deme will receive help or abandon social partners. This is because, in the
infinite island model, there is no genetic correlation (relatedness) between
individuals drawn from different patches (coalescence takes an infinite amount
of time).

However, Mdeme_abandon, Mind_abandon, Mdeme_helped, Mind_helped and Minteract vary
depending on the population frequency of an individual’s tag. Furthermore, owing
to genetic correlations between individuals (relatedness), Mind_helped and
Mdeme_helped vary depending on an individual’s trait (conditional helping/defection).
We therefore index these “M-terms” with ‘i’ to denote a given tag, and with ‘j’ to
denote a given trait, with j= 1 & j= 0 corresponding respectively to conditional
helping & defection.

Having defined these “M-terms”, we can now say that, each generation, a
conditional helper with a given tag i will socially interact (in the actor role) with
probability Minteracti

, resulting in an expected generational fecundity loss of
cMinteracti

. Each generation, an individual with a given tag i and trait j will receive
help an expected Mind helpedij

number of times, resulting in a generational fecundity

benefit of bMind helpedij
. Each generation, an individual with a given tag i will accrue

an expected generational partner search cost of csearchMind_abandon.
Each generation, the total number of times help is given on an individual’s

deme is given by NMdeme helpedij
, where N is the number of individuals on the focal

individual’s deme (including itself), and i and j are the focal individual’s tag and
trait identity. This means that helping causes a net generational fecundity increase,
summed across all individuals on the focal individual’s deme, of
b� cð ÞNMdeme helpedij

. This results in increased gamete production on the deme. A

fraction of these gametes (1−m) stay on the native deme, meaning the deme’s net
fecundity increase, after gamete dispersal, arising from helping on the native patch,
is given by 1�mð Þ b� cð ÞNMdeme helpedij

.

However, regardless of how big the deme’s juvenile haploid population is, only N
of these juveniles are (randomly) sampled from it to establish the deme’s next adult
population (local density dependence). Therefore, for any increase in fecundity due
to helping, there will be an equal loss in fecundity due to competition. The deme’s
net fecundity decrease, arising from competition on the native patch, is therefore
given by 1�mð Þ b� cð ÞNMdeme helpedij

. Each of the N parents on the native deme

bears this fecundity cost equally (stochastic deviations from equality are negligible
because each adult produces lots of juvenile offspring). This cost arises from helping
that has taken place on the native deme (helping-induced local competition). An
individual with the genotype ij suffers the following generational fecundity cost of
helping-induced local competition: 1�mð Þ b� cð ÞMdeme helpedij

.

For analogous reasons, each parent on a native deme will also suffer a helping-
induced fecundity cost arising from competitive displacement of their offspring by
juveniles produced by gametes that have migrated in from non-native patches. This
fecundity cost is borne equally by each individual in the population (stochastic
deviations from equality are negligible because each adult produces lots of juvenile
offspring). This cost arises from helping that has taken place on non-native demes

(helping-induced global competition). Each individual in the population suffers the
following generational fecundity cost of helping-induced global competition:
m b� cð ÞMpop helped .

Partner abandoning also has consequences for competition. Specifically,
partners will be abandoned a total of NMdeme abandoni

times each generation in a
focal (tag i) individual’s deme, resulting in a net reduction of juveniles on the native
deme, increasing the relative competitive success of the focal individual’s juvenile
offspring. Specifically, partner abandoning on the native deme will increase the
focal individual’s fitness by ð1�mÞMdeme abandoni

csearch (partner abandoning-
induced local competition). Furthermore, partner abandoning on non-native
demes will increase the focal individual’s fitness by mMpop abandoncsearch (partner
abandoning-induced global competition).

An individual’s absolute fitness, defined as its number of offspring that survive
through one iteration of the lifecycle, is denoted by wij, where the subscript ij
denotes the individual’s tag (i) and trait (j) identity28. Given our lifecycle
assumption that population size is constant over generations, we note that: the
population mean absolute fitness will be equal to 1; an individual’s relative fitness
(obtained by dividing its absolute fitness by the population mean absolute fitness)
will be equal to its absolute fitness (because in a population of constant size,
absolute fitness is converted to relative fitness by dividing by 1). We also note that,
though our fitness definitions are suitable for current purposes, how best to define
fitness in general is an ongoing research question45,46. We emphasise that the “M-
terms” do not vary independently from each other; for instance, they relate to each
other in such a way that the population average absolute fitness is given by 1�
∑Lmax

l¼1 ðxl0wl0 þ xl1wl1Þ ¼ 1
�
.

A given genotype ij will, owing to selection, change in frequency according to
xij′= xijwij. We can use the information given in this section to write absolute
fitness (wij) explicitly in terms of our “M-terms”. We give absolute fitness functions
for both conditional helpers (wi1) and defectors (wi0):

wi1 ¼ 1�Minteracti
cþMind helpedi1

b� b� cð Þ 1�mð ÞMdeme helpedi1
þmMpop helped

� �
� csearch Mind abandoni

� 1�mð ÞMdeme abandoni
�mMpop abandon

� �
;

ð2Þ

wi0 ¼ 1�Mind helpedi0
b� b� cð Þ 1�mð ÞMdeme helpedi0

þmMpop helped

� �
�csearch Mind abandoni

� 1�mð ÞMdeme abandoni
�mMpop abandon

� �
:

ð3Þ

Probabilities of coalescence. We now begin to close our expressions (Eqs. 2 and 3)
by writing our M-terms as functions of various probabilities of identity by descent
(IBD). Two genes sampled at a given locus in two different individuals are said to
be identical by descent (IBD) if they converge, in finite time, to a single point of
common ancestry (coalesce).

To explain this concept a bit more precisely, if we take two individuals from a
common deme, and focus on a given locus, we can ask if the two genes at this locus
are identical by descent. To work out if they are, we need to consider the ancestral
lineages of each of the two genes. If, going backwards in time, through the parents,
grandparents, great-grandparents, and so on, the two ancestral lineages eventually
converge on the same individual (e.g. they have a common great, great, …,
grandparent), then the lineages “coalesce” (converge) and the genes can be said to
be “identical by descent”. This only happens if the ancestral lineages of each gene
“stay” in the same (common) deme long enough for the lineages to converge. If one
ancestral lineage “moves” to a different deme, because, for instance, the great-great
grandfather was a migrant, then coalescence takes an infinite amount of time, and
the genes are said to be not identical by descent28,44,47.

After R&R, we define the following probabilities of coalescence (identity by
descent). See Supplementary Fig. 1 for a visual depiction of these coalescence
probabilities. F is the probability that genes sampled at a given locus, in two
individuals drawn at random (without replacement) from a common deme, are
IBD (coalesce in finite time/coalesce in the same deme). Φ is the probability that,
when genes are sampled at two loci (e.g. locus A and B), in two individuals drawn
at random (without replacement) from a common deme, the pair of genes at locus
A are IBD, and the pair of genes at locus B are also IBD. G is the probability that, if
genes are sampled at a given locus in three individuals drawn from a common
deme (individual 2 drawn without replacement of individual 1; individual 3 drawn
with replacement of individuals 1 & 2), the triplet of genes are IBD. γ is the
probability that, if three individuals are drawn from a common deme (individual 2
drawn without replacement of individual 1; individual 3 drawn with replacement of
individuals 1 & 2), individuals 1 & 2 coalesce at one locus (e.g. locus A), and
individuals 2 & 3 coalesce at a different locus (e.g. locus B).

With these coalescence probabilities defined, we can now write our M-terms in
terms of these lower-level probabilities of coalescence. Before doing so, we need to
make a simplifying assumption that selection and mutation are weak. That is—we
need to assume that the magnitude of b, c & csearch (coefficients of selection), as well
as μTrait and μTag (mutation rates), are small. This means that M-terms and IBD
probabilities are functions of demography alone (N,m,r), not selection and
mutation, which simplifies things9,28.

Minteracti
. The per-generation probability of obtaining (as actor) a tag-matched

ultimate partner, resulting in social interaction, can be written as follows. xi gives
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the population frequency of the focal individual’s tag, i.

Minteracti
¼ F þ 1� Fð Þxi

1� α 1� xi
� �

1� Fð Þ : ð4Þ

To interpret Eq. 4, note that there are a number of different ways for an
individual to obtain a tag-matched ultimate partner. These are (i) obtain an
ultimate partner that is tag-matched due to common ancestry; (ii) obtain an
ultimate partner that is tag-matched despite lacking common ancestry. Given that
we are ignoring stochastic variation in the genetic composition of demes, the
probabilities of these outcomes occurring are proportional to (scale with): (i) F,
(ii) ð1� FÞxi.

However, these probabilities (i) and (ii) must be up-scaled to account for the
fact that, before settling on an ultimate partner, an individual may have multiple
social encounters with tag-mismatched partners, which are abandoned in favour of
new social encounters. Because newly encountered partners are chosen with the
replacement of individuals that were previously encountered during the social
search, the probability of abandoning a given partner is the same, no matter how
many encounters the focal individual has already had that generation. Given that
we are ignoring stochastic variation in the genetic composition of demes, the per-
encounter probability of abandoning a partner is given by αð1� xiÞð1� FÞ. Social
searches where partners are abandoned may ultimately progress into one of the
outcomes (i) or (ii). Therefore, the total probability of finding a tag-matched
partner to socially interact with, as actor

�
Minteracti

�
, is given by summing the

probabilities of outcomes i–ii and dividing this through by 1� αð1� xiÞð1� FÞ.

Mind helpedij
. The expected number of times, per generation, that a focal individual

receives help, can be written as follows. This expectation differs depending on
whether the focal individual is itself a helper (Eq. 5) or defector (Eq. 6). pi gives the
proportion of individuals bearing the tag i who are helpers (‘helper proportion’
for short).

Mind helpedi1
¼ ϕþ F � ϕ

� �
pi þ F � ϕ

� �
xi þ 1� 2F þ ϕ

� �
pixi

1� α 1� xi
� �

1� Fð Þ ; ð5Þ

Mind helpedi0
¼ F � ϕ
� �

pi þ 1� 2F þ ϕ
� �

pixi
1� α 1� xi

� �
1� Fð Þ : ð6Þ

To interpret Eqs. 5 and 6, note that there are a number of different ways for a
focal individual to receive help (be chosen by a tag-matched helper). These are (i)
be chosen by an actor that is IBD at the tag but not trait locus, and who happens to
be a helper; (ii) be chosen by an actor that is IBD at neither the trait nor tag locus,
and who happens to be a tag-matched helper.

If the focal individual is itself a conditional helper, rather than a defector, there
are two more ways to receive help: (iii) be chosen by an actor that is IBD at both tag
and trait loci; (iv) be chosen by an actor that is IBD at the trait but not tag locus,
and who happens to be tag-matched.

Given that we are ignoring stochastic variation in the genetic composition of
demes, the expected number of times that each of these outcomes occur are
proportional to (scale with): (i) F � ϕ

� �
pi , (ii) 1� 2F þ ϕ

� �
pixi , (iii) ϕ, (iv) (F− ϕ)

xi. To obtain the exact values, we must up-scale these values (i–iv) to account for
extra social encounters obtained through the social search.

If the focal individual is a helper, the total expected number of times help is
received (Mind helpedi1

) is given by summing the probabilities of outcomes i–iv, and

dividing this through by 1� α 1� xi
� �

1� Fð Þ. If the focal individual is a defector,
the total expected number of times help is received (Mind helpedi0

) is given by
summing the probabilities of outcomes i–ii, and dividing this through by
1� α 1� xi

� �
1� Fð Þ.

Mdeme helpedi1
. The expected number of times, per generation, that a random indi-

vidual drawn from a focal individual’s deme, who is henceforth referred to as the
‘local competitor’, receives help, can be written as follows. This probability differs
depending on whether the focal individual is a helper (Eq. 7) or defector (Eq. 8).

Mdeme helpedi1
¼ Minteracti

N
þMind helpedi1

N

þ N � 2
N

 
γþ F � γ

� �
∑
Lmax

l¼1
xlpl
� �

þ F � γ
� �

∑
Lmax

l¼1

xlpl
∑Lmax

l¼1 xlpl
� � xl þ 1� xl

� �
αMinteractl

� � !

þ 1� 2F þ γ
� �

∑
Lmax

l¼1
plxl xl þ 1� xl

� �
αMinteractl

� �� �!
;

ð7Þ

Mdeme helpedi0
¼ Mind helpedi0

N

þ N � 2
N

 
F � γ
� �

∑
Lmax

l¼1
xlpl
� �

þ 1� 2F þ γ
� �

∑
Lmax

l¼1
plxl xl þ 1� xl

� �
αMinteractl

� �� �!
:

ð8Þ

To interpret Eqs. 7 and 8, note that there are a number of different ways for the
local competitor to receive help (be chosen by a tag-matched helper). These are (a)
the local competitor is the focal individual (they are the same individual), and the
focal individual (and therefore the local competitor, by nature of being the same
individual) receives help; (b) the local competitor is not the focal individual or the
focal individual’s ultimate partner, and: (i) the local competitor is chosen by an
actor that is IBD (to the local competitor) at the tag locus, but not IBD (to the focal
individual) at the trait locus, and who happens to be a helper; (ii) the local
competitor is chosen by an actor that is not IBD (to the local competitor) at the tag
locus, nor IBD (to the focal individual) at the trait locus, and who happens to be
tag-matched with the local competitor and a helper.

Furthermore, if the focal individual is itself a conditional helper, rather than a
defector, there are several additional ways for the local competitor to receive help.
These are (c) the local competitor is chosen by the focal individual as their ultimate
partner, and the two individuals are tag-matched; (d) the local competitor is not
the focal individual or the focal individual’s ultimate partner, and: (i) the local
competitor is chosen by an actor that is IBD (to the focal individual) at the trait
locus, and IBD (to the local competitor) at the tag locus; (ii) the local competitor is
chosen by an actor that is IBD (to the focal individual) at the trait locus, but not
IBD (with the local competitor) at the tag locus, and who happens to be tag-
matched with the local competitor.

Given that we are ignoring stochastic variation in the genetic composition of
demes, the expected number of times that each of these outcomes occur, after
scaling up where necessary to account for extra social encounters obtained through

the social search, are given by (a)
Mind helpedi

N , (bi) N�2
N

� �
F � γ
� �

∑Lmax
l¼1 xlpl
� �

, (bii)

1� 2F þ γ
� �

∑Lmax
l¼1 plxl xl þ 1� xl

� �
αMinteractl

� �� �
, (c)

Minteracti
N , (di) N�2

N

� �
γ, (dii)

N�2
N

� �
F � γ
� �

∑Lmax
l¼1

�
xlpl

∑Lmax
l¼1 xlplð Þ

�
xl þ 1� xl

� �
αMinteractl

��
.

If the focal individual is a helper, the total expected number of times that the
local competitor receives help (Mdeme helpedi1

) is given by summing the probabilities
of outcomes a, bi, bii, c, di, dii. If the focal individual is a defector, the total
expected number of times that the local competitor receives help (Mdeme helpedi0

) is
given by summing the probabilities of outcomes a, bi, bii.

Mpop helped . The expected number of times, per generation, that a random indivi-
dual drawn from a different (non-native) deme to the focal individual, who is
henceforth referred to as the ‘non-native competitor’, receives help, can be written
as follows. This probability is the same, regardless of the focal individual’s tag or
trait identity.

Mpop helped ¼ ∑
Lmax

l¼1
plxlMinteractl

� �
: ð9Þ

To interpret Eq. 9, note that, given that the non-native competitor is drawn
from a different deme to the focal individual, the two individuals are not identical
by descent. The RHS of Eq. 9 gives, when ignoring stochastic variation in the
genetic composition of demes, the expected number of times that the non-native is
chosen (to be an ultimate recipient) by an actor who is a tag-matched helper.

Mind abandoni
. The expected number of times, per generation, that a focal individual

(with tag i) abandons a social partner for a new encounter, can be written as
follows.

Mind abandoni
¼ α 1� Fð Þ 1� xi

� �
1� α 1� Fð Þ 1� xi

� � : ð10Þ

We derived this term as follows. Given that we are ignoring stochastic variation
in the genetic composition of demes, the probability of abandoning exactly
one partner in a given social search (generation) is given by α 1� xi

� �
1� Fð Þ

1� α 1� xi
� �

1� Fð Þ� �
, which is the per-encounter probability of abandoning a

partner α 1� xi
� �

1� Fð Þ� �
, multiplied by the per-encounter probability of not

abandoning a partner, bringing the social search to a close 1� α 1� xi
� �

1� Fð Þ� �
.

Generalising this argument, the probability of abandoning exactly η partners in a given
social search (generation) is given by α 1� xi

� �
1� Fð Þ 1� α 1� xi

� �
1� Fð Þ� �η

,
which is the per-encounter probability of abandoning a partner, raised to the power η,
and multiplied by the probability of not abandoning a partner, bringing the social
search to a close. The expected number of times that a partner is abandoned is then
given by summing the integers 1, 2, 3, …, ∞, where each integer is weighted by the
probability of abandoning exactly that many partners. Formally, the expected number
of times that a partner is abandoned is given by the infinite sum: α 1� xi

� �
1� Fð Þ

1� α 1� xi
� �

1� Fð Þ� �
∑1

η¼1ðη α 1� xi
� �

1� Fð Þ� �η�1Þ, which is a converging series
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that can be written as α 1� xi
� �

1� Fð Þ 1� α 1� xi
� ��

1� Fð ÞÞ� 1
1�α 1�xið Þ 1�Fð Þð Þ2

�
,

which simplifies to Eq. 10.

Mdeme abandoni
. The expected number of times, per generation, that a random

individual drawn from a focal (tag i) individual’s deme (the ‘local competitor’)
abandons a social partner for a new encounter, can be written as follows. This
probability varies with the focal individuals’ tag identity, but not with the focal
individual’s trait identity.

Mdeme abandoni
¼ 1

N
Mind abandoni

þ 1
N
ð1� FÞ 1� xi

� �
α 1þ∑Lmax

l≠i ðxlMind abandonl
Þ

1� xi

 !

þ N � 2
N

 
F � Gð Þ 1� xi

� �
α 1þMind abandoni

� �

þ F � Gð Þ 1� xi
� �

α 1þ∑Lmax
l≠i ðxlMind abandonl

Þ
1� xi

 !

þ 1� 3F þ 2Gð Þ ∑
Lmax

l¼1
xl 1� xl
� �

α 1þMind abandonl

� �� �!
:

ð11Þ
To interpret Eq. 11, note that, with probability 1/N, the local competitor and the

focal individual are the same individual. If this is the case, it means that the local
competitor abandons Mind abandoni

partners that generation.
With probability 1/N, the focal individual is the local competitor’s initial

partner (i.e. the first individual that the local competitor encounters on its social
search is the focal individual). If this is the case, it means that the local competitor

goes on to abandon ð1� FÞ 1� xi
� �

α
�
1þ ∑Lmax

l≠i ðxlMind abandonl
Þ

1�xi

�
partners that

generation. To interpret this term, note that we know that the local competitor’s
initial social partner has the tag i, and so, if the local competitor is to abandon its
initial partner, it must have a different tag (not tag i), and this occurs with
probability ð1� FÞ 1� xi

� �
. The local competitor then abandons its initial

partner with probability α, and goes on to abandon, in expectation, another
∑Lmax

l≠i ðxlMind abandonl
Þ

1�xi
after this. This leads to a total of ð1� FÞ 1� xi

� �
α
�
1þ

∑Lmax
l≠i ðxlMind abandonl

Þ
1�xi

�
partners abandoned that generation.

With probability (N−2)/N, the focal individual, local competitor and local
competitor’s initial partner are three different individuals. In this case, with
probability F the local competitor and the local competitor’s initial partner are tag-
matched due to identity by descent. If this is the case, it means that the local
competitor does not abandon any partners that generation. Alternatively, with
probability F–G, the focal individual and local competitor are IDB at the tag locus,
with the local competitor and local competitor’s initial partner not IDB at the tag
locus. If this is the case, it means that the local competitor has the tag i, meaning it

abandons its social partner 1� xi
� �

α 1þMind abandoni

� �
times that generation.

Alternatively, with probability F–G, the focal individual and local competitor’s
initial partner are IDB at the tag locus, with the local competitor and local
competitor’s initial partner not IDB at the tag locus. If this is the case, it means that
the local competitor’s initial partner has the tag i, meaning the local competitor
must have a different tag (not tag i) if it is to abandon any partners. This means the

local competitor abandons 1� xi
� �

α
�
1þ ∑Lmax

l≠i ðxlMind abandonl
Þ

1�xi

�
social partners that

generation. Alternatively, with probability 1–3F+2G, the focal individual, local
competitor, and local competitor’s initial partner, are not IDB at the tag locus. If
this is the case, it means that we have no information about the tag identity of the
local competitor or its initial social partner, meaning the local competitor abandons
∑Lmax

l¼1

�
xl 1� xl
� �

α
�
1þMind abandonl

��
social partners that generation.

Summing across each of these possibilities gives the total number of partners
abandoned by the ‘local competitor’ in a generation.

Mpop abandon . The expected number of times, per generation, that a random indi-
vidual drawn from a different (non-native) deme to the focal individual (the ‘non-
native competitor’) abandons a social partner for a new encounter, can be written
as follows. This probability is the same, regardless of the focal individual’s tag or
trait identity.

Mpop abandon ¼ ∑
Lmax

l¼1
ðxlMind abandonl

Þ: ð12Þ

To interpret Eq. 12, note that it is simply taking an average over the population
of the expected number of times per generation that an individual abandons a
social partner for a new encounter.

We check that our explicit M-term functions (Eqs. 4–12) are formulated
correctly by deriving the population average absolute fitness

�
∑Lmax

l¼1 ðxl0wl0 þ
xl1wl1Þ

�
as an explicit function of coalescence probabilities, and checking that this

equals 1. We reiterate, however, that these M-term functions are only exact for
either: the case where deme size is infinite (N=∞), as this eliminates stochastic

variation in the genetic composition of demes; or, the case where there is no
partner search (α= 0), as this means that stochastic variation in the genetic
composition of demes, despite existing (for finite N), has no effect on the expected
identity of social partners, and therefore has no effect on selection. We note that, in
the special α= 0 case (no partner search), our model mathematically reduces to the
weak selection version of the model considered by R&R (though, as explained in
‘Model assumptions’, we prefer a slightly different verbal description of the
equations to R&R). We note that, in ‘Finite population (agent-based) simulation’,
we use an agent-based simulation to verify that the theoretical conclusions drawn
from this model tend to hold even when deme size (N) is low.

Demographic parameters. Having written our high-level “M-terms” in terms of
coalescence (IBD) probabilities, we now finish closing our selection equations
(Eqs. 2 and 3) by writing our coalescence probabilities (F, φ, γ) in terms of fun-
damental demographic parameters. Our demographic parameters are N (deme
size), m (migration rate) and r (recombination rate). These explicit coalescence
probabilities were given in R&R, and we follow their derivations exactly.

To get an expression for F (probability of being identical by descent, IBD, at a
given locus), we first write a recursion describing how F changes across a
generation (under the assumption of weak selection and mutation)7:

F0 ¼ 1�mð Þ2 1
N
þ 1� 1

N

� �
F

� �
: ð13Þ

We derived Eq. 13 by drawing two (haploid) individuals from a deme (central
pair). Each individual in the central pair has a single (haploid) parent. With
probability 1−(1−m)2, the haploid parents were in different demes from each
other, meaning the central pair’s genes are not IBD (coalescence takes an infinite
amount of time). With probability (1−m)2, the parents were in the same deme,
meaning the central pair’s genes may be IBD (coalescence may occur in finite
time). Given that the parents were in the same deme, there is a 1

N chance that the
two parents are in fact the same individual (i.e. the same parent gave rise to the
both individuals in the central pair), meaning the central pair is IBD with certainty
(coalescence occurs). Conversely, given still that the parents were in the same
deme, there is a 1� 1

N chance that the two parents are different individuals,
meaning the central pair is IBD with probability F (coalescence occurs in finite time
with probability F). Combining these potentialities gives the recursion (Eq. 13).

We solve Eq. 13 to get the following equilibrium expression for the single-locus
IBD probability (F):

F ¼ 1�mð Þ2
1�mð Þ2 þ N 1� 1�mð Þ2� � : ð14Þ

We obtain expressions for φ, γ and G in a similar way, by writing recursions
describing how they change across a generation, and then solving them. Full details
of this methodology, including the recursions for φ, γ & G, are given in
the Supplementary Information of R&R, in the section titled ‘Probabilities of
Coalescence’. We do not reproduce the details here, nor do we write out the full
equilibrium expressions for φ, γ & G, which are too long to be illuminating.

Instead, in Supplementary Fig. 2, we plot φ, γ and G, alongside F, for different
parameter values, to show how these functions behave. We see that the coalescence
probabilities (F, G, φ, γ) decrease with migration, from a maximum of F, G, φ, γ= 1
(groups comprised solely of full-kin) when there is no migration (m= 0), to a
minimum of F, G, φ, γ= 0 (groups comprised solely of non-kin) when there is
certain migration (m= 1). It is intuitive that migration should have this effect—the
more that individuals migrate, the less likely they are to interact with individuals
with genes that are identical by descent (relatives).

When recombination rate between two loci is zero (r= 0; Supplementary
Fig. 2a), the probabilities of single and two-locus coalescence converge (F= φ), as
do the probabilities of one-locus-three-individual and two-locus-three-individual
coalescence (G= γ). This is because, with zero recombination (r= 0), genes at each
of the two loci are inherited as a single unit. For increased recombination
(Supplementary Fig. 2b, c), the probability of two-locus coalescence (φ) falls below
the probability of single-locus coalescence (F), and the probability of two-locus-
three-individual coalescence (γ) falls below the probability of one-locus-three-
individual coalescence (G). This is because genes at the two loci are less likely to be
inherited as a single unit, meaning identity by descent at one locus gives less
information about identity at the second locus.

Intuitively, the probability of single-locus coalescence is greater if the locus is
measured in two (F) rather than three (G) individuals. Analogously, the probability
of two-locus coalescence is greater if the two loci are measured in two (φ) rather
than three (γ) individuals. Coalescence probabilities (F, φ, γ, G) decrease with deme
size (N) (Supplementary Fig. 2d). The reason for this is that, with more individuals
in a deme, the probability that a given individual in the deme is derived (in recent
ancestral history) from that deme is reduced, meaning the probability that any two
individuals drawn from that deme have IBD genes is reduced.

Having expressed coalescence probabilities in terms of fundamental model
parameters, our equations for the effect of selection on genotype frequencies
(Eqs. 2–14) are now closed, meaning there is enough information contained in
them that they can be used to calculate genotype frequencies in the next time step
(dynamically sufficient).
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Recombination. Having formalised the effect of selection, we now formalise the
effect of recombination on generational genotype frequency change (from xij′ to
xij″). k denotes the alternative allele to j at the trait locus (i.e. k= 1 if j= 0; k= 0 if
j= 1).

xij
00 ¼ xij

0 2F � φ
� �

1�mð Þ2

þ 1� 2F � ϕ
� �

1�mð Þ2� � 
xij

0 xij
0 þ xik

0 þ 1� rð Þ ∑
Lmax

l≠i
xlk

0 þ ∑
Lmax

l≠i
xlj

0
� �

þ rxik
0 ∑
Lmax

l≠i
xlj

0
!
:

ð15Þ
To interpret this equation, note that, of all zygotes (haploid-haploid

associations) that form, a proportion of these—given by (2F− φ)(1−m)2—
comprise haploid components that are identical by descent at either one, or both,
of the tag and trait loci (specifically, φ(1−m)2 are IBD at both loci; 2(F− φ)
(1−m)2 are IBD at just one locus). When zygotes are comprised of haploid
components that share alleles at one or both loci, disassociation of the zygote into
haploid offspring does not result in genotype frequency change, regardless of
whether recombination occurred in the zygote. This gives rise to the first term in
Eq. 15—it states that, with probability (2F− φ)(1−m)2, recombination does not
alter genotype frequency (xij″ = xij′).

A proportion of zygotes—given by 1− (2F− ϕ)(1−m)2—comprise haploid
components that are not identical by descent (non-IBD) at either the tag or the
trait locus. Of these zygotes, a proportion, given by xij

02, comprise two ij haploid
components. These zygotes disassociate exclusively into ij haploid offspring,
meaning the first term in the brackets following 1� 2F � ϕ

� �
1�mð Þ2� �

is xij
02.

The proportion of non-IBD zygotes comprising an ij haploid component and
an ik haploid component (same tag; different trait allele) is 2xij

0xik
0, and half of the

haploid progeny from these associations have the ij genotype, regardless of
recombination, meaning the second term in the brackets following
1� 2F � ϕ

� �
1�mð Þ2� �

is xij
0xik

0 .
The proportion of non-IBD zygotes comprising an ij haploid, and a haploid

with a different tag and trait allele, is 2xij
0 ∑Lmax

l≠i xlk
0 . From these zygotes, the

proportion (1− r)/2 of haploid progeny have the ij genotype, meaning the third
term in the brackets following (1− (2F− ϕ)(1−m)2) is 1� rð Þxij 0 ∑Lmax

l≠i xlk
0 .

The proportion of non-IBD zygotes comprising an ij haploid, and a haploid
with a different trait allele but the same tag, is 2xij

0 ∑Lmax
l≠i xlj

0. From these zygotes,
half of the haploid progeny have the ij genotype, regardless of recombination,
meaning the fourth term in the brackets following (1− (2F− ϕ)(1−m)2) is
xij

0 ∑Lmax
l≠i xlj

0.
Finally, the proportion of zygotes comprising an ik haploid, and a haploid with

a different tag and different trait allele, is 2xik
0 ∑Lmax

l≠i xlj
0 . From these zygotes, the

proportion r/2 of haploid progeny have the ij genotype, meaning the fifth term in
the brackets following (1− (2F− ϕ)(1−m)2) is rxik

0 ∑Lmax
l≠i xlj

0 .

Mutation. Having formalised the effects of selection and recombination, we now
formalise the effect of mutation on generational genotype frequency change (from
xij″ to xij″′). k denotes the alternative allele to j at the trait locus (i.e. k= 1 if j= 0;
k= 0 if j= 1).

xij
000 ¼ xij

00 1� μTrait � μTag

� �
þ xik

00μTrait þ
∑Lmax

l≠i xlj
00μTag

Lmax � 1
: ð16Þ

We reiterate that, unless stated otherwise, tag mutation is assumed to be absent
(μTag= 0), as it could lead to spurious (non-adaptive) tag diversity. We will
reintroduce tag mutation later (see ‘Finite population (agent-based) simulation’), in
an agent-based simulation of the model.

Dynamically sufficient recursions. Our equations for selection, recombination and
mutation, taken together, give recursions describing how genotype frequencies
change over a single generation (from xij to xij′′′). By iterating these recursions over
many generations, we can work out the amount of helping and tag diversity that
evolves at evolutionary equilibrium.

Individual-level analysis (finding the right area of parameter space). Before
presenting the numerical results of the population genetic model, we take a step
back to ask, when does inclusive fitness theory predict that kin discrimination
based on genetic cues will evolve? Inclusive fitness theory predicts that conditional
(tag-based) altruism may only evolve if it leads to a higher inclusive fitness payoff,
to the actor, per social interaction, than both indiscriminate (not tag-based)
altruism and indiscriminate defection. In this section, we show when this is
the case.

We note at the outset, however, that this is a necessary but not a sufficient
condition for kin discrimination based on genetic cues to evolve. If recognising kin
is too costly, either because it reduces social interaction rate too much, or because

searching for partners is too costly, then genetic kin recognition will not evolve,
even if kin discrimination based on genetic cues results in a higher (inclusive
fitness) payoff per social interaction than indiscriminate strategies.

IFconditional . First, we calculate the inclusive fitness payoff of conditional (tag-based)
altruism, which we denote by IFconditional. The inclusive fitness payoff of an action is
calculated by: (1) identifying all individuals (including the actor) affected by the
action; (2) weighting each of these individuals according to their genetic relatedness
to the actor (similarity at the trait locus); (3) summing the (relatedness-weighted)
fitness consequences of the action across all of the affected individuals. We note
that fitness consequences are measured here relative to the non-social case (i.e. the
fitness consequences of defecting1). For more discussion of our inclusive fitness
payoff measure, and how it relates to a recent paper by Levin and Grafen48, see the
aside at the end of this section (‘Individual-level analysis (finding the right area of
parameter space)’).

An act of conditional (tag-based) altruism has consequences for: (1) the altruist
(actor); (2) its recipient (i.e. the altruist’s ultimate social partner after the possibility
of partner search); (3) competitors (those who suffer fecundity losses as a result of
altruism exhibited by the actor). We note here that the altruist (actor) and its
recipient are tag-matched—if they were not tag-matched, there would be no social
interaction (no altruism exhibited), and therefore no fitness effect! However, the
altruist (actor) and its competitors may be tag-mismatched.

The relatedness between the altruist (actor) and another individual (‘affected
individual’) is given by:

R ¼ λ� �p
1� �p

; ð17Þ

where �p gives the population frequency of the conditional helping allele, and λ gives
the probability that the affected individual also has the conditional altruism allele29.
Equation 17 is a simplified version of Eq. 7 in Grafen29; see ref. 29 for its derivation.

We see by plugging in λ= 1 that the actor is related to itself by 1 (complete
genetic similarity).

To work out the relatedness between the actor (altruist bearing a given tag i),

and its recipient, we need to plug in λ ¼ Mind helpedi1
Minteracti

, which is the per-opportunity

(i.e. per generation) probability that the actor’s recipient is also an altruist. To
interpret this expression for λ, note that the denominator gives the per-encounter
probability of encountering a tag-matched individual, and the numerator gives the
per-encounter probability of encountering a tag-matched altruist. Plugging this
into Eq. 17, and writing it explicitly in terms of coalescence probabilities, we obtain
the following expression for relatedness between actors and their recipients (Rtag).
Following Grafen29, we can interpret Rtag as a regression of the actor’s genic value
on its recipient’s (social partner’s) genic value, where the regression line is forced
through the population mean genic value (Supplementary Fig. 3).

Rtag ¼
xi �2Fpi þ F þ pi � 1ð Þϕ þ pið Þ þ Fpi � piϕ þ ϕ

xi �Fð Þ þ xi þ F � �p

1� �p
: ð18Þ

We can write coalescence probabilities in terms of fundamental demographic
parameters to obtain a fully explicit expression for Rtag. We plot this function to
illustrate its behaviour (Supplementary Fig. 4a). We see that Rtag increases as the
actor′s tag decreases in population frequency (the tag becomes a more reliable
indicator of kinship), especially with reduced recombination (r) between tag and
trait (the tag becomes a more reliable indicator of trait identity). Rtag decreases with
migration and deme size (social interactants are less likely to be relatives).

A notable feature of the relatedness expression (Eq. 18) is that, if helpers are
evenly distributed across tags (no linkage disequilibrium), such that pi ¼ �p, helper
frequency pi; �p

� �
‘drops out’ of the expression for relatedness. This leads to a

relatedness of

Rtag jpi¼�p
¼ ϕþ F � ϕ

� �
xi

F þ 1� Fð Þxi
; ð19Þ

which is invariant (unchanging) with respect to the frequency of the conditional
helping allele pi; �p

� �
. To interpret Eq. 19, note that the right-hand-side simply gives

the probability that an individual′s social partner is identical by descent at the trait
locus49.

Let us assume that each of the Lmax available tags is held at equal frequency in
the population (we relax this assumption later, when solving our population
genetic models), and that there is no linkage disequilibrium (i.e. pi ¼ �p). This
means that each tag is at the population frequency 1/Lmax. Furthermore, it means
that, if there are more available tags (increased Lmax), each given tag is rarer in the
population, resulting in a higher relatedness between altruists and their recipients
(Rtag). Specifically, if each of the Lmax tags are maintained at equal frequency,
relatedness at equilibrium is given by:

Rtag jpi¼�p;xi¼1=Lmax
¼ F þ ϕðLmax � 1Þ

1þ FðLmax � 1Þ : ð20Þ

Having calculated the relatedness between the actor (altruist bearing a given tag
i) and its recipient, we now calculate the (expected) relatedness between the actor
(altruist bearing a given tag i) and its competitors. To do so, we first note that, with
probability m, the competitor is drawn from a different deme to the actor (altruist),
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resulting in a relatedness (obtained by be substituting λ= �p into Eq. 17) of zero.
With probability (1−m)(1/N), the competitor is also the actor (they are the same
individual), resulting in a relatedness of 1. With probability (1−m)(1/N), the
competitor is the actor’s recipient, resulting in a relatedness of Rtag (Eq. 18).

With probability (1−m)(1−2/N), the competitor is in the same deme as the
actor but is neither the actor herself, nor the actor’s recipient. To calculate actor-

competitor relatedness in these cases, we substitute λ ¼ γ
Minteracti

þ F�γð Þ�p
Minteracti

þ

F � γ
� �� xiþ 1�xið ÞαMinteracti

Minteracti

�
þ 1� 2F þ γ
� �� xiþ 1�xið ÞαMinteracti

Minteracti

�
�p into Eq. 17, to

obtain
�

1
1��p

���
γ

Minteracti
þ F�γð Þ�p

Minteracti
þ F � γ
� �� xiþ 1�xið ÞαMinteracti

Minteracti

�
þ 1� 2F þ γ
� �

�
xiþ 1�xið ÞαMinteracti

Minteracti

�
�p
�
� �p
�
. To make sense of our λ expression, note that γ

Minteracti

(first term) gives the proportion of the altruist’s (actor’s) social interactions where
the competitor is IBD (to the actor) at the trait locus, and IBD (to its ultimate

partner) at the tag locus, and therefore is an altruist.
F�γð Þ�p

Minteracti
(second term) gives the

proportion of the altruist’s (actor’s) social interactions where the competitor is IBD
(to its ultimate partner) at the tag locus, but not IBD (to the actor) at the trait locus,

but is an altruist nevertheless. F � γ
� �� xiþ 1�xið ÞαMinteracti

Minteracti

�
(third term) gives the

proportion of the altruist’s (actor’s) social interactions where the competitor is not
IBD (to its ultimate partner) at the tag locus, but is IBD (to the actor) at the trait

locus, and therefore is an altruist. 1� 2F þ γ
� �� xiþ 1�xið ÞαMinteracti

Minteracti

�
�p (fourth term)

gives the proportion of the altruist’s (actor’s) social interactions where the
competitor is not IBD (to its ultimate partner) at the tag locus, nor IBD (to the
actor) at the trait locus, but is an altruist nevertheless.

By averaging over each of these possible scenarios, we obtain the following
expected relatedness between actors and competitors. Again, following Grafen29,
we can interpret Rcompetitor as a regression of the actor’s genic value on the
competitor’s genic value, where the regression line is forced through the population
mean genic value (Supplementary Fig. 5).

Rcompetitor ¼ 1�mð Þ
 

1
N
þ Rtag

N
þ 1� 2

N

1� �p

� �  
γ

Minteracti

þ F � γ
� �

�p

Minteracti

þ F � γ
� � xi þ 1� xi

� �
αMinteracti

Minteracti

 !

þ 1� 2F þ γ
� � xi þ 1� xi

� �
αMinteracti

Minteracti

 !
�p

!
� �p

!!
:

ð21Þ

We can write coalescence probabilities in terms of fundamental demographic
parameters to obtain a fully explicit expression for Rcompetitor. We plot this function
to illustrate its behaviour (Supplementary Fig. 4b). We see that, as tag frequency
(xi) decreases, Rcompetitor increases, though not as starkly as Rtag increases.
Recombination (r), migration (m) and deme size (N), as well as reducing the
relatedness between social partners (Rtag), and for analogous reasons, also reduce
the relatedness between competitors (Rcompetitor).

Partner search (α) reduces the relatedness between actors and competitors
(Rcompetitor). The reason for this is, with high partner search (α), actors that are
poorly related to their deme still, through partner search, have a good chance of
socially interacting. This means that these incidences, where the actor and
competitor are poorly related, are ‘counted’ in the relatedness calculation, reducing
Rcompetitor. In contrast, with low partner search (α), actors that are poorly related to
their deme are unlikely to socially interact (due to tag mismatching), meaning these
incidences are not ‘counted’ in the relatedness calculation, resulting in a higher
Rcompetitor. In this way, partner search (α) can actually reduce kin competition
(reduce Rcompetitor), increasing the area of parameter space where conditional (tag-
based) helping is favoured.

If helpers are evenly distributed across tags (no linkage disequilibrium), such
that pi ¼ �p, helper frequency pi; �p

� �
‘drops out’ of the expression for relatedness,

to give:

Rcompetitor jpi¼�p
¼ 1�mð Þ 1

N
þ

Rtag jpi¼�p

N
þ 1� 2

N

� � 

γþ xi F � γ
� �� α 1� xi

� �
γ� F2
� �

F þ 1� Fð Þxi

� ��
;

ð22Þ

which is invariant (unchanging) with respect to the frequency of the conditional
helping allele pi; �p

� �
. To interpret Eq. 22, note that the right-hand-side gives the

probability that an individual, having engaged in a social interaction, is identical by
descent at the trait locus to a random individual drawn from either the local deme
(probability 1−m) or a non-native deme (probability m). In the absence of partner

search (α= 0), this reduces to Rcompetitor jpi¼�p;α¼0
¼ 1

N þ Rtag

N þ 1� 2
N

� � γþxiðF�γÞ
Fþ 1�Fð Þxi

� �
.

Let us assume that each of the Lmax available tags are held at equal frequency in
the population, and that there is no linkage disequilibrium (i.e. pi ¼ �p). This gives a

relatedness of:

Rcompetitor jpi¼�p;xi¼1=Lmax
¼ 1�mð Þ

 
1
N
þ

Rtag jpi¼�p

N

þ 1� 2
N

� �
γþ xi F � γ

� �� α 1� xi
� �

γ� F2
� �

F þ 1� Fð Þxi

� �!
:

ð23Þ
Having derived Rtag jpi¼�p;xi¼1=Lmax

and Rcompetitor jpi¼�p;xi¼1=Lmax
, we can now write

down the inclusive fitness payoff of conditional (tag-based) altruism, on the
assumption that tags have equalised in frequency and helper proportions:

IFconditional ¼ Rtag jpi¼�p;xi¼1=Lmax
b� b� cð ÞRcompetitor jpi¼�p;xi¼1=Lmax

� c; ð24Þ
where Rtag jpi¼�p;xi¼1=Lmax

is given in Eq. 20 and Rcompetitor jpi¼�p;xi¼1=Lmax
is given in

Eq. 23.

IFdefection . Having derived, on the assumption that tags have equalised in frequency
and helper proportions, the inclusive fitness payoff of conditional altruism (kin
discrimination based on genetic cues), we can now ask when kin discrimination
based on genetic cues will be favoured over defection. The inclusive fitness payoff
of defection is zero, by definition, as it is a non-social trait1. This means that
conditional (tag-based) altruistic helping will be favoured over defection whenever
the following condition is satisfied (obtained by evaluating IFconditional>IFdefection).
Failure to satisfy this condition implies that defection will persist at evolutionary
equilibrium:

Rtag jpi¼�p;xi¼1=Lmax
b� b� cð ÞRcompetitor jpi¼�p;xi¼1=Lmax

� c > 0; ð25Þ
where Rtag jpi¼�p;xi¼1=Lmax

is given in Eq. 20 and Rcompetitor jpi¼�p;xi¼1=Lmax
is given in

Eq. 23. This condition is a version of Hamilton′s rule, which has been generalised
from the more familiar form Rb−c > 0 to account for the effects of altruism on
competitors32,33,35. Equation 25 is replicated in the main text, with simpler nota-
tion, as Eq. 1 (note that in Eq. 1, Rtag jpi¼�p;xi¼1=Lmax

is written simply as Rtag , and

Rcompetitor jpi¼�p;xi¼1=Lmax
is written simply as Rcomp).

IFindiscriminate . To derive the inclusive fitness payoff for indiscriminate altruism
(IFindiscriminate), we assume that there is one single tag at fixation (no tag diversity;
xi ¼ 1; �p¼ pi). We evaluate our relatedness coefficients (Eqs. 18 and 21) under this
assumption of no tag diversity, which gives Rtag jxi¼1

¼ F and

Rcompetitor jxi¼1
¼ 1

N þ N�1
N F. This leads to an inclusive fitness payoff of indis-

criminate altruism, written explicitly in terms of model parameters, of:

IFindiscriminate ¼ � m b� cð Þ 1�mð Þ þ c N 2�mð Þð Þð Þ
m 2�mð Þ N � 1ð Þ þ 1ð Þ

� �
: ð26Þ

We can see by inspection of Eq. 26 that, given that helping is costly (c > 0), the
inclusive fitness payoff of indiscriminate altruism (IFindiscriminate) is always negative
(the numerator & denominator inside the brackets are both positive, meaning the
overall expression is always negative).

Conditional (tag-based) helping confers a greater inclusive fitness return than
indiscriminate helping whenever IFconditional>IFindiscriminate . Using Eqs. 24 and 26,
we can evaluate this condition, and we see that it holds whenever there is diversity
at the tag locus (Lmax > 1). This is intuitive—by discriminating who it interacts
with, an individual is more likely to interact with kin, meaning there is a greater
inclusive fitness return from helping. Therefore, as long as individuals are capable
of differentiating individuals based on their tag (Lmax > 1), kin discrimination based
on genetic cues will confer a greater inclusive fitness payoff, per social interaction,
than indiscriminate helping.

Furthermore, given that the inclusive fitness payoff of indiscriminate helping is
always negative, we can deduce that, in fact, indiscriminate helping will never
evolve under these lifecycle assumptions—it is always less favourable than
defection. This result was also given in R&R, and was first obtained in an inclusive
fitness analysis of a very similar lifecycle by Taylor33. It is an example of a general
result in social evolution theory, which is that, in ‘homogeneous’ population
structures, where the scale of social interaction is equal to the scale of competition,
kin selection (favouring altruism) is exactly offset by kin competition (disfavouring
altruism), precluding the evolution of indiscriminate altruism32,35,44,50–52.

Predictions based on inclusive fitness theory. This analysis reveals that, if tags evolve
in such a way that their frequencies and helper proportions equalise, kin dis-
crimination based on genetic cues will confer a greater inclusive fitness return, per
social interaction, than indiscriminate strategies, wherever Eq. 25/1 is satisfied.
However, we emphasise that kin discrimination based on genetic cues could evolve
here; not that it will evolve here (it is a necessary rather than sufficient condition).

Specifically, if the costs of recognising kin (partner search cost/reduced social
interaction rate) exceed the benefits (increased inclusive fitness payoff from a given
social interaction), then tags will not equalise in frequency. Instead, tag diversity
will be lost at equilibrium (L*= 1), and indiscriminate defection will evolve.
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We have expressed these predictions, based on inclusive fitness theory, with
minimal reference to genetic details. We will see that our prediction—that kin
discrimination based on genetic cues evolves whenever Eq. 25/1 holds and there is a
low cost of genetic kin recognition—is borne out by our explicit population genetic
analyses. However, this prediction is high-level and somewhat vague, insofar that we
have not examined the causal effects of model parameters such as partner search
rate (α), partner search cost (csearch), recombination (r), trait mutation (µTrait), and
so on, and we have not examined how evolution proceeds at the level of loci (tag &
trait). For this, we need explicit genetic analyses, and we come onto this next.

An aside regarding Levin and Grafen48. We note as an aside that, when calculating
the inclusive fitness payoff of a given action (trait), we followed Hamilton in
measuring the fitness consequences of the trait relative to the hypothetical scenario
where the actor does not express the trait1. A recent paper argues that, instead,
when calculating the inclusive fitness payoff of a given action (trait), the fitness
consequences of the trait should be measured relative to the population average
trait value48. For instance, this proposed amendment to the calculation of inclusive
fitness payoffs would mean, contrary to what we said in the above analysis, that
indiscriminate defection could have an inclusive fitness payoff that is different from
zero, because defection could still have fitness consequences relative to the popu-
lation average trait value.

We stuck to Hamilton’s original definition in our above calculations, for two
reasons. Firstly, in the present model (and in the island model analysed below), the
two approaches lead to quantitatively identical predictions regarding when kin
discrimination based on genetic cues should be expected to evolve. Secondly, the
equations are simpler and the mathematical argument is easier to follow when
inclusive fitness calculations are made relative to case where the trait is absent
(Hamilton’s definition), rather than to the population average trait value (proposed
amendment). More broadly, the two formulations are likely to give identical results in
most models, with Hamilton’s original definition only leading to potential pitfalls, and
requiring amendment, in models where fitness effects combine non-additively48,53,54.

Full analysis (solving the model). We numerically solve our population genetic
model, for different parameter values (N, m, r, α, µTrait, b, c), and present the
results55. We are primarily interested in whether, and when, kin discrimination
based on genetic cues is found at equilibrium (multiple tags+ conditional helping).

Initial conditions. For each numerical simulation of our population genetic
recursions (‘run’), we assume that one tag is initially dominant, and the remaining
tags are rare. Specifically, we set the initial frequency of one tag to 0.9, and we
randomly distribute the remaining 0.1 amongst the other Lmax− 1 tags (with each
tag frequency above zero). We also assume that the helping allele is initially rare
(we set the initial helper proportion of each tag to 0.1). The start point of our runs
is therefore indiscriminate defection. This allows us to examine the evolution as
well as the maintenance of kin discrimination based on genetic cues. It can also be
thought of as an unfavourable scenario for the evolution of kin discrimination
based on genetic cues (negligible initial tag diversity).

We note that our model is only defined for certain parameter combinations.
Specifically, our model is only defined for parameter combinations in which fitness
is non-negative. The reason for this is simply that fitness is defined as “number of
offspring who survive one iteration of the lifecycle”, meaning negative fitness
(negative offspring) is nonsensical. For a given rate of partner search (α), the
maximum generational cost of partner search is given by α

1�α csearch (this is obtained
by evaluating Mind abandoni

for F= 0 & xi= 0 and multiplying by csearch). This leads
to a lowest achievable fitness of 1� α

1�α csearch � c. We present results for parameter
combinations in which 1� α

1�α csearch � c > 0, as these are the parameter
combinations in which we can be sure that fitness is non-negative across all
individuals in the population at all times, meaning our model is defined.

Summary statistics. For each run, we track two summary statistics. Summary sta-
tistics are measured across a given time period, starting at generation Tend – Tinterval
and ending at generation Tend, where Tinterval gives the length of the time period,
and Tend gives the end-point (Tinterval ≥ 0 & Tend ≥ 1). The two summary statistics
are:

● Number of segregating tags.

● Frequency of the conditional helping allele.

Below, we give their precise mathematical definitions (Eqs. 27 and 28). We take
xijt to be the population frequency of genotype ij (tag i; trait j) in generation t.

First, we calculate the average-over-time-and-over-tags tag frequency. Or more
precisely, if an individual (tag not specified) is randomly chosen from a population,
from a generation that is randomly chosen from within Tend – Tinterval to Tend, we
calculate the expected frequency of the individual’s tag as:

1
LjTend ;Tinterval

¼
∑Lmax

i¼1 ∑
Tend
t¼Tend�Tinterval

∑1
j¼0xijt

� �2
1þ Tinterval

: ð27Þ

The average-over-time number of segregating tags LjTend ;Tinterval

� �
is then simply

given by the inverse of the right-hand side of Eq. 27. This is our first summary
statistic. We note that this metric is not the countable number of tags—such a
measure would be misleading, because it would give equal weight to tags that are
limitingly rare and exceedingly common. Rather, this metric is an effective tag
number based on tag frequencies.

The average frequency of the helping allele can be written as follows (Eq. 28).
This is our second summary statistic.

coopjTend ;Tinterval
¼

∑Lmax
i¼1 ∑

Tend
t¼Tend�Tinterval

xi1t
1þ Tinterval

: ð28Þ

We define equilibrium as the point at which the two summary statistics are no
longer changing. At equilibrium, then, Tinterval and Tend are both sufficiently large
that, for a further increase in either Tinterval or Tend, there is negligible change in
either of the summary statistics. Therefore, at equilibrium, Tinterval and Tend are
large, but they are arbitrary insofar that their precise values do not non-negligibly
change any of the summary statistics. We can therefore drop the Tend, Tinterval

indexing when writing our equilibrium summary statistics: L* & coop*. We obtain
these equilibrium summary statistics by iterating our recursions for a sufficiently
long period of time, and using a sufficiently large interval to calculate them with
respect to (sufficiently large Tinterval and Tend).

Having introduced our summary statistics, we can now move on to the results.
Results for the case where partner search is uncostly and unrestricted (α= 1 &
csearch= 0) are plotted, for different parameter values, in Supplementary Fig. 6 (r is
varied across y-axes; m is varied across x-axes; N & µTrait are varied across
panels a–d).

Evolution of genetic kin recognition when partner search is uncostly and unrestricted
(α= 1 & csearch= 0). R&R showed that, when individuals are incapable of
searching for social partners (α= 0), and when selection is weak, individuals
bearing rare tags suffer a starkly reduced social interaction rate relative to indivi-
duals bearing common tags, and as a result, rare tags are always disfavoured
relative to common tags, precluding genetic kin recognition—indiscriminate
defection always evolves. We recover this result.

However, when individuals can search for social partners at no cost (α= 1 &
csearch= 0), and when there is a sufficient amount of mutation at the trait locus
(μTrait; only a small amount of trait mutation is required), genetic kin recognition
evolves at evolutionary equilibrium whenever our Hamilton’s Rule condition
(Eq. 25/1) is satisfied, and indiscriminate defection evolves whenever our
Hamilton’s Rule condition (Eq. 25/1) is not satisfied (Supplementary Fig. 6).
Insufficient trait mutation (μTrait) can reduce the region where genetic kin
recognition is found relative to the region where our Hamilton’s Rule condition
(Eq. 25/1) is satisfied—the reason for this, which is subtle, is given in the ‘Key
points and implications’ section below.

We noted previously that satisfaction of the condition in Eq. 25/1 will only lead
to the evolution of genetic kin recognition if tags equilibrate in frequency (Crozier′s
paradox is overcome), and this will require a low cost of kin recognition (high α &
low csearch). We have seen that, given enough trait mutation (μTrait), there is a
perfect correspondence between the predicted (Eq. 25/1) and actual regions of
parameter space where genetic kin recognition, as opposed to indiscriminate
defection, evolves. This shows that trait mutation (μTrait) and cheap partner search
(high α, low csearch) create the necessary context for our Hamilton’s Rule condition
(Eq. 25/1) to work as a predictor of long-term social evolution.

Genetic constraint on tag diversification. We make two points about tag availability
(Lmax). To reiterate, our parameter Lmax gives the maximum number of tags that
may segregate in the population—it therefore captures an evolutionary constraint
on tag diversification. In Supplementary Fig. 6, this parameter is set to Lmax= 100.
Our first point is that, if the evolutionary constraint on tag availability is relaxed,
leading to a greater Lmax, then each tag has the potential to (simultaneously)
achieve a lower relatedness (given by 1/Lmax), which means that a greater relat-
edness can potentially be achieved between social partners (Rtag; see Supplementary
Fig. 4 for the exact relationship between tag frequency and coefficients of relat-
edness). This means that, for increased tag availability (Lmax), kin discrimination
based on genetic cues is favoured (Eq. 25/1 satisfied) across an increased region of
parameter space. If the evolutionary constraint on tag diversity is relaxed com-
pletely (Lmax→∞), then kin discrimination based on genetic cues is favoured
(Eq. 25/1 satisfied) across most of the parameter space (i.e. across most values of m,
N and r).

Our second point about tag availability is that, when partner search is cheap and
prevalent (very high α & low csearch), and there is sufficient trait mutation (μTrait),
all available tags are maintained. For instance, if α and μTrait are sufficiently high
and csearch sufficiently low, when there are 100 available tags, all 100 tags are
maintained at equilibrium when kin discrimination based on genetic cues evolves
(Supplementary Fig. 6). Conversely, when there are e.g. 1000 available tags, all 1000
tags are maintained at equilibrium when kin discrimination based on genetic cues
evolves. This arises because, if α and μTrait are sufficiently high and csearch
sufficiently low, there is genuine negative frequency dependence at the tag locus—
the rarest tag is the fittest—which means that all available tags are ‘striving’ to
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obtain the lowest population frequency possible, meaning all are maintained (no
tags are displaced).

Putting these two points about tag availability together, we can see that, if
there is no evolutionary constraint on tag diversification (Lmax→∞); and α,
μTrait & 1/csearch are sufficiently high; genetic kin recognition will be: (i) evolvable
across very broad parameter space, and (ii) open ended, leading to limitless tag
diversification and hence a highly precise capacity of individuals to discriminate
genealogical kin from non-kin. Of course, unlimited and non-costly partner search
(α= 1 & csearch= 0), and an unrestricted ability to differentiate tags (Lmax→∞),
will not literally apply to natural systems, so infallible kin discriminatory systems
should not be generally expected.

Evolution of genetic kin recognition when partner search is costly or restricted (α < 1
or csearch > 0). A limitation on the capacity of individuals to search for partners
(α < 1), and/or a cost of partner search (csearch), reduces the region where genetic
kin recognition is found relative to the region where our Hamilton′s Rule condition
(Eq. 25/1) is satisfied.

These α < 1 and csearch > 0 results are explained more fully in the main text (Figs. 4
and 5). We will note here, though, that the stability of genetic kin recognition is
compromised less by an increase in the partner search cost (csearch) than by a decrease
in the encounter parameter (α). A principal reason for this is that, when the encounter
parameter (α) is reduced, individuals with rare tags suffer a cost of a reduced social
interaction rate. But an additional factor is that the benefit of tag rarity—increased
likelihood of receiving help in a given social interaction—also shines through less
strongly, because there are few social opportunities from which to reap this benefit! In
contrast, when the partner search cost (csearch) is increased, individuals with rare tags
suffer an increased total cost of finding a social partner to interact with. But the
benefit of tag rarity—increased likelihood of receiving help in a given social
interaction—shines through more strongly, because individuals with rare tags still
have many social opportunities from which to reap this benefit.

Finite population (agent-based) simulation. One issue with our mathematical
model, which we are yet to address, is that we ignored stochastic variation in the
genetic composition of demes. We did this to make our model mathematically
tractable. This approximation does not matter when deme size (N) is infinite,
because stochastic deme variation decreases to zero as deme size (N) increases to
infinity. Also, this approximation does not matter when there is no partner search
(α= 0), because in this case, selection proceeds according to the expected genetic
composition of demes, meaning stochastic deme variation would have no effect on
evolution, even if we had modelled it (the genotype frequency recursions, once
simplified, would be the same).

However, an inaccuracy is introduced when demes are finite and there is some
partner search, and this inaccuracy increases as deme size (N) is reduced and partner
search (α) is increased. To see why this is the case, note that, if deme size (N) is low, an
individual with a rare tag will, under conditions of low relatedness, often enter into
demes with no tag-matched individuals. In such incidences, no amount of partner
search (α) will allow the individual with the rare tag to obtain a tag-matched partner to
socially interact with. Conversely, if we ignore stochastic deme variation and assume
that each deme has the same genetic variation in it as the population as a whole, as we
did when constructing our mathematical model, then the rare-tag individual will be
able to find a tag-matched social partner, given enough partner search (α). Ignoring
stochastic deme variation is therefore likely to make partner search (α) more effective
for finding a social partner to interact with, for purely artificial reasons. It is therefore
pertinent that we verify our results when there is realistic (i.e. stochastic) deme
variation. To do this, we need to construct an agent-based simulation.

We use an agent-based simulation to check the validity of our mathematical
analysis, which was only technically accurate for: an infinite population; weak
selection/mutation (low b, c, csearch, μTrait, μTag); infinitely large demes (N=∞). Our
agent-based model is accurate for finite populations, stronger selection/mutation,
and arbitrarily sized demes (N), including small ones. Furthermore, it is stochastic
rather than deterministic, meaning each individual reproduces, interacts and
mutates probabilistically each generation. As deme size (N) increases and selection/
mutation decreases (low b, c, csearch, μTrait, μTag), our agent-based and mathematical
models converge.

Stochasticity means that tags may be lost from the finite population (by drift) even
if they are favoured by selection. This could lead to the false impression that genetic
kin recognition is unreachable by natural selection (un-evolvable), when in fact, it is
just prohibited by excessive genetic drift. Therefore, in our agent-based model, we
permit mutation at the tag locus (μTag > 0), which means that tag diversity can be
maintained by selection even if tags are repeatedly lost through drift.

We find that the results of our population genetic analysis (Supplementary
Fig. 6) are recovered in our agent-based simulation (Supplementary Fig. 7). This
shows that, although our mathematical analysis ignored stochastic deme variation,
and assumed that populations are infinite and selection/mutation is weak, our
conclusions tend to hold even when populations are finite, selection/mutation is
stronger, and demes are small.

Balancing selection in the finite population model. Our finite population (agent-
based) model permitted tag mutation. As we pointed out when constructing our
mathematical model, an issue with this is that tag mutation could allow tag

diversity to be maintained by mutational force, even if it is opposed by selection
(spurious tag diversity). Therefore, we need to undertake further analysis of our
finite population (agent-based) model to rule out the possibility that tag diversity is
being maintained by mutational force (spurious).

We run a version of our finite population (agent-based) model that sets tag
mutation to zero (μtag= 0). Each trial, we set the initial tag diversity to maximum
(each of the Lmax tags at an initial population frequency of 1/Lmax), and then iterate
over successive generations, stopping only when tag diversity is lost (one tag
reaches fixation). For each trial, we record the time taken (generations passed) for
tag diversity to be lost (tag fixation time).

Note that, in a finite population model such as the one considered here, tag
fixation time will necessarily be bounded (not infinite)—that is, tag diversity will
eventually be lost, owing to drift. However, if balancing selection were very strong
relative to drift, tag fixation time would be very large—possibly too large to track
computationally (requiring too many iterations of the simulation)! We therefore
focus on relatively small population sizes, where drift is strong, meaning tag
fixation time is always small enough to measure without prohibitively high
computational power.

In the region of parameter space where tag diversity is maintained (e.g. when there
is prevalent and cheap partner search; high α, low csearch), the first step towards ruling
out mutational force as the cause of stable tag diversity is checking that the tag fixation
times in these regions of parameter space are greater than in their corresponding
neutral scenarios, where demographic parameters (N, μtrait) are held constant but
selection coefficients (c, b and csearch) are set to zero (note that α can technically be set
to anything in the neutral scenarios, because partner search has no consequence in the
absence of selection). If the tag fixation time is greater when there is selection, relative
to when selection is absent (corresponding neutral case), then the implication is that
balancing selection is in operation, prolonging the time period within which tag
diversity persists7. Another way of putting this is to say that balancing selection is
implied if the tag fixation ratio, obtained by dividing tag fixation time under selection
by its corresponding neutral tag fixation time, is greater than one.

However, a positive tag fixation ratio, though necessary, is not a sufficient
condition for demonstrating that balancing selection is in operation and responsible
for the maintenance of tag diversity. A problem is that a positive tag fixation ratio
could also arise in scenarios where selection eliminates tag diversity (directional tag
selection), but via an extended path, for instance characterised by unstable tag
frequency spiralling, where tag frequencies go up and down over time, with increasing
amplitude, until one tag eventually reaches fixation. Unstable spiralling is not
balancing selection—it is not maintaining multiple tags at equilibrium, but it
nevertheless could cause tag fixation time to increase relative to the neutral case
(which may be characterised by a more direct evolutionary path to tag fixation, not
characterised by spiralling). We therefore need to undertake further analyses to rule
out the possibility of directional selection via an extended path, before we can
conclude that balancing selection is responsible for maintaining tag diversity7.

We follow R&R and address this confounder by examining how the tag fixation
ratio changes as population size is changed. If selection is causing tag diversity to be
lost but via an extended path, then increasing the efficacy of selection relative to
drift, for instance by increasing the population size, would cause the population to
evolve along the (extended) path more quickly relative to the neutral case, meaning
the tag fixation ratio would decrease. Conversely, if genuine balancing selection is
in operation, then increasing the efficacy of selection relative to drift, for instance
by increasing the population size, would cause the tag fixation ratio to increase.

We find that, in the areas of parameter space where our finite population
(agent-based) model found stable tag diversity (Supplementary Fig. 7), the tag
fixation ratio increases with population size, demonstrating that genuine balancing
selection is in operation. Specifically, we recover key results obtained by R&R that,
when migration (m) and recombination (r) are very small, balancing selection may
maintain tag diversity even in the absence of partner search (α= 0), and the
strength of balancing selection increases with the magnitude of b & c (keeping the
ratio b/c constant) (Supplementary Fig. 8). In addition, we find both that increasing
the rate of partner search (α) and decreasing the cost of partner search (csearch)
increases the strength of balancing selection, in turn increasing the likelihood that
tag diversity is maintained (Supplementary Fig. 8).

Key points and implications. Overall, we found that kin discrimination based on
genetic cues evolves in our island lifecycle if the following conditions are met:

1. Conditional altruism, predicated on the matching of tags with equal population
frequencies (xi) and helper proportions (pi), gives a greater inclusive payoff to
the actor than indiscriminate strategies would (Eq. 25/1 is satisfied).

2. There is negative frequency dependence at the tag locus, meaning tag
frequencies equalise. This is facilitated by:

a. Prevalent and cheap partner search (high α & low csearch).
b. Some trait mutation (μTrait).

Condition 1: Inclusive fitness. Condition 1 relates to whether there is anything to be
gained by restricting interactions to genealogical kin. There might not be any
reason to do so. For instance, the risk of being cheated by a random deme-mate
might be miniscule anyway, removing the evolutionary incentive to restrict social
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interactions to genealogical kin. Under the island lifecycle assumptions, condition 1
is more likely to be satisfied if recombination between tag and trait (r) is low and
migration (m) is low.

Many previous studies have pointed out that recombination (r) and migration
(m) hinder the evolution of genetic kin recognition—we accept and recover this
result. However, it is generally thought that these parameters exert their effect by
introducing evolutionary constraints, which prevent the population from evolving
towards genetic kin recognition7,8,24,56. It is implicitly assumed that genetic kin
recognition would evolve in the absence of such constraints.

We take issue with this interpretation in general, though it is sometimes true.
For instance, recombination can sometimes break down linkage disequilibrium
between rare tags and altruism, preventing genetic kin recognition from evolving
when it otherwise (at lower recombination) would have. However, the capacity of
recombination (r) to constrain the evolution of genetic kin recognition dissipates
when individuals are capable of cheap partner search (high α & low csearch).

Furthermore, we have shown that recombination (r), migration (m) and deme
size (N) affect the relatedness between social partners and local competitors
(Supplementary Fig. 4), and therefore affect whether it is advantageous for an
individual to restrict social interactions to their tag-mates. As a result, genetic kin
recognition is sometimes an adaptive strategy for an inclusive fitness maximising
agent, and sometimes it is not, and this will depend on r, m, N. Therefore, N, m & r
influence the trajectory of evolution by affecting the adaptive value of genetic kin
recognition, not (in general) by constraining the range of evolutionary paths that
could be taken. You could say that the evolutionary path is chosen by freely
evolving, fitness-maximising agents; it is not begrudgingly followed by diminished
evolutionary agents with little opportunity to have done otherwise.

Condition 2a: Partner search. Condition 2a relates to whether or not Crozier′s
paradox (common-tag advantage) is overcome. This will depend on the extent to
which individuals can abandon their social partners, for new social encounters, at not-
too-great a fitness cost. Under our lifecycle assumptions, when individuals are
incapable of partner search (α= 0), and selection is weak (low magnitude of b and c),
rare tags suffer a starkly reduced social interaction rate, and consequently a prohibi-
tively large direct fitness cost. This means that common tags are selected, eliminating
diversity at the tag locus, and preventing the evolution of genetic kin recognition.

Conversely, when individuals are capable of cheap partner search (high α, low
csearch), rare tags do not suffer as stark a reduction in social interaction rate. When
partner search is uncostly and unrestricted (α= 1 & csearch= 0), rare tags suffer no
(if demes are large) or little (if demes are smaller) reduction in social interaction
rate (negligible direct cost). The dissipation of the prohibitively large direct cost of
tag rarity means that rare tags may be selected, leading to tag equilibration, if the
indirect benefit of tag rarity is large enough. Rare tags gain their (indirect)
advantage over common tags by being more reliable indicators of kinship, and as a
consequence, being less likely to lead to social interactions with cheaters31.

Condition 2b: Trait mutation. Sometimes, partner search alone is not enough to
generate an advantage for rare tags and lead to genetic kin recognition. Sometimes,
mutation at the trait locus (μTrait) is also required. Trait mutation takes effect in the
following way. Defectors spread amongst individuals bearing common tags, and
conditional altruists spread amongst individuals bearing rare tags (kin selection). If
the conditional altruism allele spreads (via rare-tag groups) more quickly than it is
removed (via common-tag groups), the conditional altruism allele will increase in
population frequency alongside rare tags, leading to tag equilibration (genetic kin
recognition) and conditional altruism31.

However, if the conditional altruism allele spreads (via rare-tag groups) more
slowly than it is removed (via common-tag groups), the conditional altruism allele
will decrease in population frequency. In this case, in the absence of trait mutation,
the frequency of the conditional altruism allele will fall to approximately zero
(fixation of the defection allele), resulting in defection. This may even occur in
regions of parameter space where Eq. 25/1 is satisfied. In other words, even if
conditional altruism is favoured when all tags are at equal frequency (Eq. 25/1
satisfied), the quick purging of conditional altruists amongst individuals bearing
common tags may mean that tag frequencies do not successfully equilibrate, and
defection evolves as a result.

However, if the conditional altruism allele spreads (via rare-tag groups) more
slowly than it is removed (via common-tag groups), but there is mutation at the
trait locus, the frequency of the conditional altruism allele will not fall all the way to
zero. Rather, it will only fall as low as mutation-selection balance (non-zero). This
means that, even if conditional altruists are being removed (via common tags)
faster than they are being added (by rare tag groups), a baseline proportion of
altruists will persist in the population due to the net mutation of defectors into
altruists. Furthermore, the altruists that persist will disproportionately bear rare
tags (linkage disequilibrium)31.

In this way, trait mutation ensures that fitness differences between tags persist
despite the potentially fast purging of conditional altruists bearing common tags.
The persistence of tag fitness differences allows rare tags to increase in frequency
alongside the conditional altruism allele. The common tags decrease in frequency,
eventually reaching low enough population frequencies that the conditional
helping allele is selected amongst individuals bearing these tags. After this point,
the conditional helping allele is universally favoured (i.e. selected amongst

individuals bearing all tags), resulting ultimately in tag equilibration and the
fixation of the conditional helping allele. Therefore, trait mutation may promote
the evolution of genetic kin recognition based on genetic cues.

Theoretical significance. As we mentioned earlier, a general result in social evolu-
tion theory is that, in ‘homogeneous’ population structures, where the scale of
social interaction is equal to the scale of competition, kin selection (favouring
altruism) is offset by kin competition (disfavouring altruism), precluding the
evolution of altruism32,44,50–52. Altruism only evolves in ‘heterogeneous’ popula-
tion structures, where the scale of social interaction is less than the scale of
competition. Most theoretical demonstrations of the evolution of altruism have
focused on lifecycles where the heterogeneity is there from the start (assumed)—for
instance, some have assumed that generations overlap57; others have assumed that
individuals disperse in groups58. By contrast, we have shown that heterogeneous
population structure can evolve mechanistically (from scratch), under relatively
permissive conditions, leading to the evolution of altruism.

Additional definitions and derivations
Definitions of the four outputs plotted in Fig. 2c. Figure 2c plots, for a single trial, the
following four outputs against time: (1) helping frequency; (2) tag diversity; (3)
deviation from pedigree relatedness; (4) linkage disequilibrium. Precise mathe-
matical definitions of these four outputs are given below.

Firstly, helping frequency is trivially given by ∑Lmax
l¼1 xlpl . This is the population

frequency of the helping allele.

Secondly, tag diversity is given by

1

∑
Lmax
l¼1

x2
lð Þ � 1

Lmax�1 . To interpret this definition, note

that the average tag frequency is given by ∑Lmax
l¼1 x2l
� �

, meaning the number of
segregating tags is given by 1

∑Lmax
l¼1 x2lð Þ, meaning the proportion of all available tag

diversity that is present at a given time is given by

1

∑
Lmax
l¼1

x2
lð Þ�1

Lmax�1 , which is our tag

diversity output.
Thirdly, deviation from pedigree relatedness is given by

∑Lmax
l¼1 xl Rtag jpi¼�p

� Rtag

��� ���� �
. This is the average absolute difference between:

the actual (locus-specific) relatedness between actors and social partners
(Rtag; Eq. 18), and the pedigree relatedness between actors and social
partners (Rtag jpi¼�p

; Eq. 19).

Fourthly, linkage disequilibrium is given by –D, which can be written explicitly

as �∑Lmax
l¼1 xl xl �∑Lmax

l¼1 xl
2

� �
pl � �p
� �� �

. This is derived in the following section.

Derivation of linkage disequilibrium. We derive an expression for the association
(linkage disequilibrium) between tag frequency and helping. Our derivation follows
the standard methodology for calculating linkage disequilibria in multi-locus
population genetic models, as outlined in Kirkpatrick et al.36.

We characterise trait deviation as follows. Let an individual have a trait value of
0 if it has the defection allele, and a trait value of 1 if it has the helping allele. The
population average trait value is then given by �p, where �p is the population average

frequency of the helping allele �p ¼ ∑Lmax
l¼1 xl1

� �
. A given individual will therefore

deviate in its trait value from the population average trait value. For individuals
with the helping allele, this deviation will be 1� �p, and for individuals with the
defection allele, this deviation will be ��p. The average trait deviation amongst
individuals bearing a given tag i will then be given by:

pi � �p; ð29Þ
where pi is the frequency of the helping allele amongst individuals who have the tag
i pi ¼ xi1=ðxi0 þ xi1Þ
� �

. The average trait deviation amongst the whole population

is trivially given by zero ∑Lmax
l¼1 xl pl � �p

� �� � ¼ 0
� �

.

We characterise tag frequency deviation as follows. Let each individual have a
tag frequency value that is (trivially) given by the population frequency of its tag
xi ¼ xi0 þ xi1
� �

. A given individual may therefore deviate in its tag frequency value
from the population average tag frequency value. For individuals with the tag i, this
deviation will be:

xi � ∑
Lmax

l¼1
xl

2; ð30Þ

where the∑Lmax
l¼1 xl

2 term gives the population average tag frequency (i.e. this will be
one if there is only one tag at fixation in the population). The average tag frequency
deviation amongst the whole population is trivially given by zero

∑Lmax
l¼1 xl xl �∑Lmax

l¼1 xl
2

� �� �
¼ 0

� �
.

For a given individual with a tag i, the product of deviations over the tag and
trait loci is obtained by multiplying Eqs. 29 and 30 to give:

xi � ∑
Lmax

l¼1
xl

2

� �
pi � �p
� �

: ð31Þ
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If this multiplicatively combined joint deviation is positive, it means either that:
(i) the individual has a more-common-than-average neutral tag and a greater-than-
average expectation (based on its tag identity) of being a helper; (ii) the individual
has a less-common-than-average tag and a lower-than-average expectation (based
on its tag identity) of being a helper. Conversely, if this multiplicatively combined
joint deviation is negative, it means either that: (i) the individual has a more-
common-than-average tag and a lower-than-average expectation (based on its tag
identity) of being a helper; (ii) the individual has a less-common-than-average tag
and a greater-than-average expectation (based on its tag identity) of being a helper.

The expected product of deviations over the tag and trait loci, measured across
all individuals in the population, is then obtained by averaging Eq. 31 over all tags
({1, 2,…,Lmax}), to give:

D ¼ ∑
Lmax

l¼1
xl xl � ∑

Lmax

l¼1
xl

2

� �
pl � �p
� �� �

: ð32Þ

Equation 32 gives the association (linkage disequilibrium) between tag
frequency and helping. It is a population-wide statistic, insofar that it refers to a
characteristic of the population as a whole, rather than to a specific individual in
the population. Technically, it is equal to the covariance in the allelic state of genes
at the tag and trait loci. A positive value of D indicates that common tags are
associated with (technically: “covary with”) the helping allele. Conversely, a
negative value of D indicates that rare tags are associated with (technically: “covary
with”) the helping allele. In Fig. 2c, we plot –D rather than D, as the former
represents the association between rare tags and helping.

Definition of tag excess helping plotted in Fig. 3b. The dotted lines in Fig. 3b show,
for a given tag, the probability above the population average that a social inter-
action results in help being received (tag excess helping). Explicitly, tag excess
helping is given by xi pi � �p

� �
; where pi and �p denote helping frequency amongst

tag i individuals, and all individuals, respectively, and where xi denotes the
population frequency of tag i. The tag frequency weighting (xi) is applied so that
the curves are discernible when plotted.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated during the current study are available at https://doi.org/10.5281/
zenodo.662418455.

Code availability
The Matlab code used to perform simulations and numerical calculations is available at
https://doi.org/10.5281/zenodo.662418455. We include programs for implementing our
weak-selection mathematical model, and our agent-based simulation model. We also
include code for generating figures.
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