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S1 The Model

We need a total of seven equations to capture the ecological dynamics of both the1

residents and the mutants. From the life cycle in figure one and the description2

in the main text, this allows us to write (for the residents):3

d[X]

dt
= (((rX (1 − d) η) − µX) [X])

− (β (1 + ζc) [X][Y ])

+ (((1 + κ) (1 − d) rXη) + µY + (1 − ξc) δ) [XY ]

d[Y ]

dt
= (((rY (1 − c) η) − µY ) [Y ])

− (β (1 + ζc) [Y ][X])

+ (((1 + κ) rY (1 − c) (1 + ωd) η) + µX + (1 − ξc) δ) [XY ]

d[XY ]

dt
=β (1 + ζc) [Y ][X]

− (µY + µX + (1 − ξc) δ − ((1 + λd) (1 + αc)) rXY η) [XY ]

(S.1)

Where η = 1 − k([T ] = [X] + [XY ] + [Y ]) is density dependent regulation, and4

k controls its extent.5

Following the standard adaptive dynamics approach, we assume that invad-6

ing mutants are rare enough so as not to affect the dynamics of the resident7

population (Metz et al., 1992; Rand et al., 1994; Dieckmann and Law, 1996).8

Accordingly, we only need four additional equations to capture the dynamics of9

mutants in each gene (X ′ and Y ′), which are expressions for d[X′]
dt , d[Y ′]

dt , d[X′Y ]
dt ,10
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and d[XY ′]
dt . These differ from system S.1 only in their values for c and d, the11

mutant trait values, which we denote with primes as c′ and d′.12

The equations for the mutant can be written in the form (Van Baalen and13

Jansen, 2001):14

d[i′]

dt
= F ′i [i

′] − β′[i′][j] + P ′i [i
′j] (S.2)

d[i′j]

dt
= β′[i′][j] −M ′ij [i

′j] (S.3)

Where Fi = (ρi − µi) is the growth of i alone, Pi = (µj + θi + δ) is the15

production of i’s from complexes, and Mij = (µi + µj + δ − ρij) is the loss of16

complexes. The primes indicate mutant values in gene i, and [j] is the equilib-17

rium frequency of copies produced in the absence of the mutant. This form for18

an invasion condition was first identified by Van Baalen and Jansen (2001). For19

illustration, we reproduce each term for replicator Y , but equivalent equations20

can be extracted for replicator X.21

F ′Y = (rY (1 − c′) ((1 − k ([T ])))) − µY (S.4)

P ′Y = ((1 + κ) rY (1 − c′) (1 + ωd) ((1 − k ([T ]))) + µX + (1 − ξc′) δ)

M ′XY = (µY + µX + (1 − ξc′) δ − ((1 + λd) (1 + αc′)) rXY ((1 − k ([T ]))))

βY = β (1 + ζc′)

We can rewrite system S.4 in matrix form as:22

d

dt

[
[i′]
[i′j]

]
=

[
F ′i − β′[j] P ′i
β′[j] −M ′ij

] [
[i′]
[i′j]

]
(S.5)

The first matrix on the right hand side of equation S.5 contains all the23

information we need to determine the spread of a rare mutant (Van Baalen and24

Jansen, 2001; Hurford et al., 2009). A useful decomposition of this matrix is25

the form Fi - Vi, where,26

Fi =

[
F ′i P ′i
0 0

]
,Vi =

[
β′i[j] 0

−β′i[j] M ′ij

]
(S.6)

According to the next generation theorem (Hurford et al., 2009), given that27

F > 0, V−1, and the spectral bound of −V is negative, the condition for a28

mutant to invade is that the spectral radius of FV−1 > 1. This condition can29

be written as:30

P ′i
M ′ij

+
F ′i

β′[j]
> 1 (S.7)

This is equation 2 in the main text.31
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Taking the derivatives of equation S.7 with respect to small changes in mu-32

tant trait values gives the direction of selection in each trait, which we use to33

produce Figure 2c.34

Coevolution is driven by the interaction between the two mutant trait values,35

c′ and d′. These interaction terms are contained entirely in the derivative of36

the first term of Equation (S.7, and it can easily be seen that ∂
∂c′

(
P ′

i

M ′
ij

)
and37

∂
∂d′

(
P ′

i

M ′
ij

)
are positive functions of c′ and d′, respectively.38

This is not a quantitative model, and therefore we do not extensively dis-39

cuss the specific values the parameters can take. Those with a specific chemical40

system in mind should use parameter values relevant to the biochemistry of the41

molecules at hand. Here, we simply point out that what matters for the evolu-42

tion of cooperation is the ratio of different key parameters, found in equation43

(S.7). For example, if the baseline replication rate, ri, is of several orders smaller44

than the baseline association rate, β, and the benefit to cooperation, ω, is small45

relative the other parameters, it will be difficult for cooperation to spread. This46

is because in the absence of an association mutation, individuals often already47

find themselves in pairs, and the additional benefit of cooperation is insignifi-48

cant. All the important relationships can be read directly from equation (S.7)49

(equation 2 in the main text).50

S2 Tracking same-type replicator pairs51

Above we did not track XX or Y Y pairs. This means that the above model52

holds in systems where the replicators do not form self-self complexes. We53

also conjectured that the results would approximately hold even if they do form54

such complexes, because individuals in XX and Y Y pairs do not gain byproduct55

benefits, and therefore have a lower replication rate than when inXY complexes.56

We checked this by developing a model that explicitly tracks such pairings. This57

requires two additional equations for the density of XX and Y Y complexes, for58

a total of five equations:59
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d[X]

dt
= (((rX (1 − d) η) − µX) [X])

− (β (1 + ζc) [X][Y ])

+ (((1 + κ) (1 − d) rXη) + µY + (1 − ξc) δ) [XY ]

− β[X][X] (S.8)

+ (µX + δ + rX (1 − d) η) [XX]

d[Y ]

dt
= (((rY (1 − c) η) − µY ) [Y ])

− (β (1 + ζc) [Y ][X])

+ (((1 + κ) rY (1 − c) (1 + ωd) η) + µX + (1 − ξc) δ) [XY ]

− β[Y ][Y ] (S.9)

+ (µY + δ + rY (1 − d) η) [Y Y ]

d[XY ]

dt
=β (1 + ζc) [Y ][X]

− (µY + µX + (1 − ξc) δ − ((1 + λd) (1 + αc)) rXY (1 − k ([T ]))) [XY ]

d[XX]

dt
=β[X][X] − (µX + µY + δ − rXXη) [XX]

d[Y Y ]

dt
=β[Y ][Y ] − (µY + µX + δ − rY Y η) [Y Y ]

Where η = 1 − k([X] + [XY ] + [Y ] + [XX] + [Y Y ]).60

Following the same approach as above, we derive the condition for a mutant61

in replicator type i to spread as:62

[i]β

[i]β + [j]β′

(
P ′ii
M ′ii

)
+

[j]β′

[i]β + [j]β′

(
P ′i
M ′ij

+
F ′i

[j]β′

)
> 1 (S.10)

The new terms, P ′ii and M ′ii, capture the production and loss of same type63

pairs, respectively. This inequality is of a similar form to Equation (S.7). The64

original expression for fitness is now weighted by the relative rate of pairing65

with the other type. The new component of fitness (the first term) the ratio of66

production of same type pairs to loss of same type pairs, and is weighted by the67

relative rate of pairing with the same type.68

Numerically solving across parameter state space shows that the same re-69

sults hold as above, with cooperative enzymatic activity failing to spread on70

its own, association evolving in the absence of such activity, and the two traits71

co-evolving to higher values than when on their own (Figure S1).72

S3 An explicit model of pairing73

The above model left unspecified how cooperation and association increase pair-74

ing of replicator copies, capturing the effect in the term ρij . We now adapt the75
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model to a specific population structure, in order to make this effect explicit.76

Doing so necessarily requires sacrificing some of the generality of the first model,77

but what it loses in generality it gains in precision.78

We now need to track two additional populations: X’s and Y ’s that have79

been produced from pairs. This is because in order to explicitly model the effects80

of cooperation and association on pairing, we need to track the densities of copies81

produced from pairs before they become randomly mixed in the population.82

The assumptions are the same as above, except now we allow for some base-83

line rate, χ, at which copies produced from pairs immediately pair again. Oth-84

erwise they return to the independent populations of X and Y . We assume that85

the rate of pairing is increased by both cooperation and physical association, by86

a factor (1 + λd′) (1 + αc′), and is a function of the densities of copies produced,87

denoted [Xo] and [Yo]. The new system of equations describing the population88

dynamics is now:89

d[X]

dt
= (((rX (1 − d) η) − µX) [X])

− (β (1 + ζc) [X][Y ]) + ψ[Xo]

d[Y ]

dt
= (((rY (1 − c) η) − µY ) [Y ])

− (β (1 + ζc) [Y ][X]) + ψ[Yo]

d[XY ]

dt
=β (1 + ζc) [Y ][X]

− (µY + µb + (1 − ξc) δ) [XY ] + (1 + λd) (1 + αc′) [Xo][Yo]

d[Xo]

dt
= ((1 + κ) (1 − d) rXη) [XY ] − (1 + λd) (1 + αc′) [Xo][Yo] − ψ[Xo]

d[Yo]

dt
= ((1 + κ) rY (1 − c) (1 + ωd) η) [XY ]

− (1 + λd) (1 + αc′) [Xo][Yo] − ψ[Yo], (S.11)

where η = 1 − k([X] + [XY ] + [Y ] + [Xo] + [Yo]). The parameter ψ controls90

the relative rate at which copies produced from pairs return to the population91

of free X and Y .92

Following the same approach as before, we can write system S.11 in matrix93

form as:94

d

dt

 [i′]
[i′j]
[i′o]

 =

F ′i − β′[j] P ′i ψ

β′[j] −M ′ij A′i[jo]

0 PR′i −A′i[jo] − ψ

 [i′]
[i′j]
[i′o]

 (S.12)

P ′i now measures only replicators returned to the independent population95

from complexes as a result of dissociation and destruction, because copies pro-96

duced from complexes are captured in the term PR′i. A
′
i measures the associ-97

ation of copies produced from complexes, and [jo] is the equilibrium frequency98

of copies produced from complexes.99
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Using the next generation theorem (Hurford et al., 2009), we find the con-100

dition for a mutant to invade a resident population to be:101

ψP ′i + [jo]P ′iA
′
i + ψPR′i

ψM ′ij + [jo]M ′ijA
′
i − [jo]PR′iA

′
i

+
F ′i

β′[j]
> 1 (S.13)

This equation and its derivatives with respect to changes in c′ and d′ allow us102

to analyse evolution of cooperation or physical association on their own, or their103

co-evolution. We recover the result that co-evolution can favour the evolution104

of cooperation in conditions under which it would not have evolved on its own105

(Figure S2). The result depends crucially on the relative rate at which copies106

produced from pairs return to the independent populations (ψ), with ψ ≈ 1107

recovering the main results.108

S4 Relation to previous mathematical models109

Adaptive dynamics was developed through a serious of papers in the 1990s110

(Metz et al., 1992; Rand et al., 1994; Geritz et al., 1997; Dieckmann and Law,111

1996). The key assumption is that the mutant is initially rare enough that you112

can assume it does not impact the ecological equilibria. Accordingly you can113

assume that the resident populations have reached equilibrium when the mutant114

is introduced, and study it’s growth rate in that setting.115

Law and Dieckmann (1998) developed a model to study the coevolution116

of two species in the context of an exploiter-victim relationship evolving into117

a vertically transmitted symbiosis. They used the same approach of tracking118

both independent populations as well as complexes (in their case ‘holobiont’).119

Their main result was that, when costs of being free-living are high enough,120

even strictly exploitative relationships can evolve into symbioses in the presence121

of vertical transmission. This is analagous to our result that, when benefits122

of being in a complex are high enough, stickiness can favour the evolution of123

cooperation.124

Van Baalen and Jansen (2001) extended the work of Law and Dieckmann125

(1998) in developing a model to study two-species systems, in which they tracked126

the two independent populations as well as complexes. Their goal was to de-127

velop a general methodology for studying two interacting populations, and they128

specifically discussed two prey populations which shared defence of a predator129

and a host parasite interaction which shared a resource. Their key result was130

that the invasion condition for a mutant in such interacting populations could131

be captured in simple, biologically interpretable expressions (analagous to our132

equation 2).133

Day et al. (2007) developed a similar model for studying two interacting134

populations, applying it to the specific case of a mutualism between corals and135

zooxanthellae. Their model also allowed explicit tracking of gene frequencies in136

both populations.137
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We adopted Van Baalen and Jansen (2001)’s general approach and notation,138

but developed a biological model for simple replicators. We studied the case of139

one population acting as a cooperator and the other acting to affect association140

and dissociation rates. We argue that this is relevant to molecular replicators,141

but it is also of potential interest to models of interacting populations in gen-142

eral: because when the association rates can evolve, this will affect evolutionary143

dynamics.144

We used an approach developed by Hurford et al. (2009) to derive the inva-145

sion conditions. This is why our invasion condition takes a different form than146

Van Baalen and Jansen (2001); we found that the Next Generation Theorem al-147

lowed us to pull out terms defining the invasion condition that were more easily148

interpretable from a biological standpoint in this context.149

We also extended Van Baalen and Jansen (2001)’s approach in the appendix150

by: (i) tracking same-type pairs, and therefore allowing for interactions within151

populations (Section S2), and (ii) explicitly tracking the offspring of complexes,152

allowing these subpopulations to have distinct dynamics from the larger popu-153

lation (Section S3).154

Table S1: Summary of key notation
Notation Definition

[X] Density of replicator type X
[Y ] Density of replicator type Y

[XY ] Density of replicator pairs
ρi Total production of type i replicators on their own
θi Total production of type i replicators from pairs
ri Baseline replication rate of type i replicator
µi Rate of destruction of type i replicators
β Baseline association rate
δ Baseline dissociation rate
k Degree of density dependence
T Total density of replicators in system
η Density dependent replication, = 1 − k[T ]
rij Baseline rate at which ij pairs immediately pair again
κ Byproduct benefit to being in pair
c Degree of association trait
d Degree of cooperative enzymatic activity trait
ζ Increase in association rate due to association mutation
ξ Decrease in dissociation rate due to association mutation
ω Increase in replication rate of type Y due to cooperative enzymatic mutation
λ Increase in the rate pairs re-pair due to cooperative enzymatic mutation
α Increase in the rate pairs re-pair due to association mutation
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Figure S1: The coevolution of enzymatic activity and association when allowing
for same-type pairs to form. Grey shaded areas show regions of state space
where selection is negative, and white areas where selection is positive. Arrows
depict the direction of evolution in state space along neutral lines. Evolutionar-
ily stable strategies are depicted by solid circles. (a) The evolution of enzymatic
activity in X is not favoured. In the absence of association, cooperative en-
zymatic activity cannot evolve. (b) The evolution of association in Y. In the
absence of cooperative enzymatic activity in X, some intermediate level of asso-
ciation in Y is favoured. (c) The coevolution of cooperative enzymatic activity
and association. Arrows depict the direction of selection in both traits at a
given point in state space. When traits are allowed to coevolve, cooperative en-
zymatic activity and association both evolve from anywhere in state space, with
association reaching higher values than in (b), and enzymatic activity evolv-
ing towards its maximal value of 1. (d) A schematic of (a)-(c). Solid circles
depict the evolutionarily stable resting point of both populations depending
on whether each population evolves independently or evolve jointly. Coevolu-
tion favours higher values in both traits. Values for parameters in (a)-(d) are:
α = 20, λ = 20, ζ = 5, ξ = 1, ω = 20, rY = 2.3, rX = 2.1, rXY = 0.9, rXX =
0.01, rY Y = 0.01, k = 0.01, µY = 1.1, µX = 1.1, κ = 100, β = 0.01, δ = 0.9. All
figures generated graphically from the equations described in the Supplementary
Material using Mathematica Software version 11.3.0.0.
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Figure S2: The coevolution of enzymatic activity and association in an explicit
model of pairing. Grey shaded areas show regions of state space where selection
is negative, and white areas where selection is positive. Arrows depict the
direction of evolution in state space along neutral lines. Evolutionarily stable
strategies are depicted by solid circles. (a) The evolution of enzymatic activity
in X is not favoured. In the absence of association, cooperative enzymatic
activity cannot evolve. (b) The evolution of association in Y. In the absence
of cooperative enzymatic activity in X, some intermediate level of association
in Y is favoured. (c) The coevolution of cooperative enzymatic activity and
association. Arrows depict the direction of selection in both traits at a given
point in state space. When traits are allowed to coevolve, cooperative enzymatic
activity and association both evolve from anywhere in state space, with both
traits reaching higher values than in (b) and (c). (d) A schematic of (a)-(c).
Solid circles depict the evolutionarily stable resting point of both populations
depending on whether each population evolves independently or evolve jointly.
Coevolution favours higher values in both traits. Values for parameters in (a)-
(d) are: α = 20, λ = 20, ζ = 5, ξ = 1, ω = 20, rY = 2.3, rX = 2.1, rXY =
0.9, k = 0.01, µY = 1.1, µX = 1.1, κ = 100, β = 0.01, δ = 0.9, ψ = 1. All
figures generated graphically from the equations described in the Supplementary
Material using Mathematica Software version 11.3.0.0.
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