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Abstract 
Bacteria are capable of a wide range of cooperative behaviours. It has been suggested that 

horizontal gene transfer, which is common in bacteria, could help to stabilise cooperation and 

prevent the invasion of non-cooperative cheats. Research on this hypothesis has largely focused 

on plasmids: genetic sequences found across bacteria that can often transfer to other cells. Here, 

I test two key predictions of this hypothesis across 51 bacterial species. Contrary to these 

predictions, I find that genes for cooperation are not more likely to be carried on: (1) plasmids 

compared to chromosomes; (2) more mobile plasmids compared to less mobile plasmids. Next, 

I explore characteristics of plasmids themselves. First, I examine correlations between three 

potential ‘life-history’ traits of plasmids: size, mobility and range. Second, I find that plasmid 

sequences are consistently enriched with A and T nucleotide bases compared to chromosomes, 

and explore two hypotheses for why this is the case. Finally, horizontal gene transfer can impact 

the content of bacterial genomes. To explore these impacts, I test whether bacterial species’ 

genomes become more variable with increasing environmental variability. Overall, in this 

thesis I consider the evolution of cooperation and horizontal gene transfer in bacteria, and how 

they may interact.  
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Introduction 
Since the discovery of bacteria over 300 years ago, we now know that our health, the growth 

of our crops, and even the stability of the climate, are all dependent upon bacteria (Gest 2004; 

Burrows et al. 2009; Hayat et al. 2010; Zhang et al. 2015). In additon to their interactions with 

animals, plants, and the climate, we also now know that bacteria  interact with each other. 

Rather than acting in isolation, as it was largely assumed until the beginning of this century, 

bacteria have remarkably active social lives (West et al. 2006, 2007a; Foster 2010). A social 

behaviour is one which affects the fitness of both the performer and the recipient of the 

behaviour (West et al. 2007b; Davies et al. 2013). When the behaviour increases the fitness of 

the recipient, and is selected for because of this benefit, this is described as a cooperative 

behaviour (Hamilton 1963, 1964; West et al. 2007b).  

 

In this thesis, I will explore the role of horizontal gene transfer in bacteria, with a particular 

focus on the evolution of cooperation. Before describing the outline of my thesis, I introduce 

the concepts of cooperation and horizontal gene transfer in bacteria. I provide only a brief 

introduction here, because each of my Chapters contains its own introduction.  

 

Cooperation in bacteria 
Bacteria are capable of performing a wide array of cooperative behaviours. Many of these 

cooperative behaviours occur through the extracellular secretion of molecules that act as 

‘public goods’ (West et al. 2006, 2007a; Foster 2010). The small size of these molecules can 

cause them to diffuse away from the producing cell, meaning their effects are shared with 

neighbouring cells (Kümmerli et al. 2009; Mund et al. 2017). These molecules are costly to 

produce, but provide benefits to both the producing cell and its neighbours (Diggle et al. 2007; 

Ghoul et al. 2014b). Examples of these benefits include invasion of hosts, breakdown of food 

sources, and scavenging for scarce but essential nutrients (Griffin et al. 2004; Rumbaugh et al. 

2009; McNally et al. 2014; Orsi et al. 2018).  

 

Cooperative behaviours lead to the problem that they could potentially be exploited by non-

producing ‘cheats’. These are individuals who pay no costs, yet are able to reap the benefits 

provided by those still performing the behaviour (shown as red in Figure 1) (Ghoul et al. 

2014a). In bacteria, ‘cheats’ are usually cells which downregulate expression or no longer have 

a functional copy of the cooperative gene (Cordero et al. 2012; Andersen et al. 2015; Ghoul et 
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al. 2017). Why cooperation remains stable, despite the threat from non-cooperative cheats, was 

a major problem for evolutionary biology.  

 

However, kin selection theory tells us that cooperation can remain stable if the benefits of a 

behaviour are directed preferentially towards individuals who also share the gene for the 

behaviour (Hamilton 1963, 1964; Ghoul et al. 2014a). Hamilton realised that relatedness, 

defined as the relative genetic similarity of two individuals relative to the population of 

potential recipients, was key for understanding the evolution of cooperation (Grafen 1985; 

Davies et al. 2013). Hamilton’s rule describes the conditions under which an altruistic 

behaviour, which has no direct benefit to its actor, will be favoured by selection. Specifically, 

a gene for altruism will spread if rB – c > 0, where r is the relatedness between actor and 

recipient at the altruistic locus, B is the fitness benefit gained by the recipient from the 

behaviour, and c is the fitness cost to the actor due to the behaviour (Hamilton 1963, 1964). In 

bacteria, mechanisms that introduce population structure can increase relatedness, because 

cells will tend to be near related cells. Consequently, individuals who do not carry the gene, 

and so do not produce the public good, cannot benefit from and cheat the behaviour.  

 

Figure 1. Public goods and cheats 

An example of how cheats can exploit cooperation. Green bacteria are co-

operators, which produce and take up public goods (green dots). The red 

bacterium is a cheat, which does not produce yet still takes up public goods. 

 

There is also another potential problem: why would the other ‘non-cooperative’ genes in the 

individual be selected to pay a fitness cost to help other individuals? The answer is that because 

genes are passed on vertically to an organism’s descendants, potential recipients that carry the 
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cooperative gene are also more likely to carry the other genes in the actor’s genome (Grafen 

1985, 1989). Therefore, the rest of the genome will gain the indirect fitness benefit of helping 

a related recipient along with the cooperative gene. This ‘common ancestry’ via vertical 

inheritance is key to much of social evolution theory, since it leads to more or less equal 

relatedness at all genomic loci and prevents the other genes from suppressing the cooperative 

behaviour (Figure 2a) (Grafen 1985).  
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Figure 2. Relatedness through kinship, chromosomal HGT and plasmid 

transfer 

(a) The relatedness between outbred diploid siblings is the same across all 

loci in the genome due to common ancestry. (b) Horizontal gene transfer 

(HGT) can occur between unrelated bacteria, meaning individuals could be 

r = 1 at the transferred loci and r = 0 everywhere else. (c) Plasmids can 

transfer between unrelated bacteria, a form of HGT called conjugation, 

meaning that individuals could be r = 1 at all plasmid loci and r = 0 at all 

chromosome loci. Adapted from Grafen, 1985.  
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Horizontal Gene Transfer 

However, more or less equal relatedness across the genome may not be the case for all 

organisms (Figure 2b & 2c). Horizonal gene transfer (HGT), where genetic material is 

transferred between organisms other than vertically, has been found to be remarkably common 

(Land et al. 2015; Soucy et al. 2015). This is particularly true for bacteria, with much of the 

average bacterial genome made up of previously ‘foreign’ DNA (McInerney et al. 2017). 

Horizontal gene transfer can mean that the evolutionary history of a gene may be very different 

to the organism in which it is present (Figure 3).  

 

Figure 3. Horizontal gene transfer and evolution 

Two illustrations of a phylogenetic gene tree, with different alleles of a gene 

in different colours. The left-hand tree is without horizontal gene transfer: 

any gene will have the same evolutionary history as the individual that carries 

it. In contrast, the right-hand tree is with horizontal gene transfer: a gene may 

have a different evolutionary history to both the individual that carries it and 

the other genes in the genome.  

 

There are three major types of HGT in bacteria which vary in terms of how much control the 

donor and/or recipient have on the transfer, how random or non-random it is, and how 

frequently the genes transferred actually incorporate into the recipient genome (Thomas & 

Nielsen 2005; Hall et al. 2017) (Figure 4). First is transformation, where a bacterial cell enters 

a state called competence and takes up free DNA from the environment, some of which may 

end up incorporated into the genome (Lorenz & Wackernagel 1994; Chen & Dubnau 2004). 

t

it
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Second is transduction, which is mediated by infection by bacteriophages (viruses which infect 

bacteria) (Canchaya et al. 2003). Here, a phage inserts itself into the bacterial genome, and 

then can take sections with it when it becomes encapsulated to exit the cell (Jiang & Paul 1998). 

Third, conjugation is where semi-autonomous segments of DNA transfer to nearby cells via a 

tube called a pili, usually encoded by the segment itself (Llosa et al. 2002). The conjugation 

process has been particularly well studied in plasmids, which are small, usually circular pieces 

of DNA that can replicate independently from the rest of the genome (Stewart & Levin 1977; 

Willetts & Skurray 1980; Pinilla-Redondo et al. 2018). 

 

 

Figure 4. Types of Horizontal Gene Transfer (HGT) in bacteria 

Blue indicates genetic material which is being transferred from one cell to 

the other. The arrows indicate the direction of this transfer. (a) A conjugative 

plasmid (shown as a blue circle) moves through a pili into the cytoplasm of 

the recipient cell. (b) A bacteriophage genome inserts itself into the bacterial 

chromosome (or plasmid), where it replicates and is repackaged into the 

phage capsule (shown in black). Along with its genome, sections of DNA 

either side of the phage can be incorporated into the capsule. This capsule 

 

o

I

 (a) Conjugation

(c) Transformation

(b) Transduction
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then infects other bacterial cells, transferring the DNA it carries. (c) A 

bacterial cell enters a state called competence where it can take up free DNA 

from the environment into the cytoplasm.  

 

How could horizontal gene transfer affect bacterial cooperation? 

There is a possibility that horizontal gene transfer could promote and stabilise cooperation in 

bacteria. If cooperative genes were able to be transferred horizontally, then any cheats that lose 

the gene could be ‘re-infected’ with the cooperative gene (Smith 2001) (Figure 5). Transfer of 

the gene between individuals could increase relatedness at the cooperative locus and favour 

cooperation (Smith 2001; Nogueira et al. 2009; Mc Ginty et al. 2011, 2013; Dimitriu et al. 

2014). Furthermore, transfer of the cooperative gene could favour cooperation even in 

scenarios where individuals were unable to direct the benefits of the behaviour towards other 

cooperators. Of the three methods of horizontal gene transfer in bacteria, conjugation via 

plasmids has received by far the most research attention as a potential driver of this cooperation 

hypothesis (Figure 5) (Smith 2001; Mc Ginty et al. 2013; Dimitriu et al. 2014).  

 

Figure 5. HGT increases relatedness by ‘re-infecting’ those without the 

cooperative gene 

Green bacteria are co-operators, which produce and take up public goods 

(green dots). They carry a plasmid which encodes the production of this 

public good (shown in blue). The red bacterium is a cheat, which does not 

produce yet still takes up public goods. It can cheat because it does not carry 

the cooperative plasmid. In the figure, a cooperator is able to transfer the 
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cooperative plasmid to the cheat via a conjugative pili, increasing relatedness 

and restoring the cheat to a co-operator.  

 

Compared to other mobile genetic elements, plasmids could be a particularly good candidate 

for driving this hypothesis. First, plasmids have been sequenced in virtually all bacterial phyla 

(Rodríguez-Beltrán et al. 2021). As such, a bacterial genome is usually made up of one large 

chromosome, and several smaller plasmids. Since cooperation is thought to occur in almost all 

bacteria, the high prevalence of plasmids means they could help to stabilise cooperation in each 

of these species. Second, many of these plasmids can move to other bacterial cells via 

conjugation, and this can occur extremely rapidly within populations (Smillie et al. 2010; 

Sheppard et al. 2020). Third, in addition to replication and mobilization machinery, many 

plasmids carry genes that code for beneficial and ecologically relevant traits (Rankin et al. 

2011). These include genes for antibiotic resistance, heavy-metal resistance, and toxins for 

virulence (Hale 1991; Cornelis et al. 1998; Gullberg et al. 2014; Lopatkin et al. 2017; 

Stevenson et al. 2017). It has not gone unnoticed that many of these genes may also act as 

cooperative public goods (Rankin et al. 2011; Nogueira et al. 2012; Garcia-Garcera & Rocha 

2020).  

 

This cooperation hypothesis has received some support. Theoretical and experimental studies 

have shown that transfer of cooperative genes on plasmids could select for cooperation in 

situations where it would not otherwise be favoured (Smith 2001; Mc Ginty et al. 2011, 2013; 

Dimitriu et al. 2014). Additionally, there is some evidence from studies on bacterial genomes 

that plasmids may carry proportionally more genes coding for extracellular proteins, which are 

likely to act as cooperative public goods, than the less mobile chromosome (Nogueira et al. 

2009, 2012; Garcia-Garcera & Rocha 2020). This would be expected if plasmid transfer 

consistently helped to maintain cooperation in bacteria.  

 

However, there are also potential issues with this hypothesis. One is that the rate of transfer of 

the cooperative gene must be greater than the fitness benefit gained by ‘cheats’, and fast enough 

to have a real influence on relatedness (Ghoul et al. 2017). Given that there is considerable 

variation in how quickly plasmids can transfer, it is possible that many plasmids do not transfer 

fast enough between cells for this to be the case (Sheppard et al. 2020). Second, plasmid 

incompatibility, where certain plasmids are unable to coexist stably within a cell, could lead to 

‘cheat plasmids’ emerging (Pinto et al. 2012; Hülter et al. 2017). One factor that can cause 
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plasmids to be incompatible is if they share similar replication or partitioning systems (Hülter 

et al. 2017). If a cell emerged with a version of the plasmid that had lost the cooperative gene, 

the similarity of this ‘cheat plasmid’ to the original ‘cooperative plasmid’ could prevent the 

cell from being ‘re-infected’ with the cooperative gene. Over time, the ‘cheat plasmid’ would 

be expected to increase in frequency in the population, preventing stable cooperation. 

 

Additionally, with such frequent horizontal gene transfer in bacteria, the linkage between the 

inheritance of a cooperative gene and the rest of the genome may be much weaker in bacteria 

than in multicellular eukaryotes (Figure 2). This could open up the possibility of intragenomic 

conflict and prevent cooperative genes from spreading (Scott & West 2019; Hall et al. 2020). 

Therefore, horizontal gene transfer of cooperative genes could actually cause a problem for the 

evolution of cooperation in bacteria. 

 

Furthermore, this is not the only hypothesis that might predict that plasmids should carry 

proportionally more genes for public goods (Nogueira et al. 2009; Ghoul et al. 2017). First, 

while public goods are likely to have cooperative effects, their location in the extracellular 

space means they are also likely to interact with the environment (Garcia-Garcera & Rocha 

2020). Genes that help bacteria adapt to certain environments could also be expected to be 

favoured if located on mobile elements, since horizontal gene transfer would allow the gene to 

be easily gained when the trait is required and easily lost when no longer needed. Second, 

carriage of genes on plasmids may provide benefits beyond their ability to transfer (Rodríguez-

Beltrán et al. 2021). There are many plasmids actually incapable of transferring via conjugation 

(Smillie et al. 2010). Despite this, these non-mobilizable plasmids are still found across many 

bacterial species, and often code for traits which are useful to their hosts (Smillie et al. 2010). 

This suggests that rather than simple vehicles of horizontal gene transfer, there may be other 

selection pressures that could cause plasmids to carry certain kinds of genes (Rodríguez-

Beltrán et al. 2021).  

 

Thesis Outline 
Here, I explore the role of horizontal gene transfer in bacterial cooperation and evolution. For 

most of the thesis, I focus in particular on plasmids. I first examine a potential role of plasmids 

in stabilising cooperation via conjugation, before analysing other features of plasmids, 

including their size, mobility, range, and base content. Finally, I consider how horizontal gene 
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transfer might impact the evolution and structure of bacterial genomes more generally. 

Specifically:  

 

In Chapter 2, I use comparative genomics across 51 bacterial species to test two key 

predictions of the hypothesis that conjugation via plasmids could stabilise cooperation. 

Contrary to these predictions, I show that genes coding for extracellular proteins are not more 

likely to be found on plasmids compared to chromosomes, and on more mobile plasmids 

compared to less mobile plasmids. I then discuss the reasons why previous studies found 

support for this hypothesis. Instead, I find evidence that the lifestyle of a species may determine 

whether their plasmids carry more genes coding for extracellular proteins. Specifically, I show 

that plasmids of pathogenic species with a broad host-range are particularly enriched with 

genes coding for extracellular proteins, compared to non-pathogens and narrow host-range 

pathogens. I find that this is because plasmids in these species code for many more extracellular 

proteins involved in pathogenicity. This suggests that these species carry pathogenicity genes 

on their plasmids because of benefits other than being able to re-infect cheats with these genes. 

 

In Chapter 3, I further explore the potential role of plasmids in bacterial evolution by 

considering how potential ‘life-history’ traits of plasmids, specifically their size, mobility, and 

range, correlate with one another. I find that, consistent with previous studies, conjugative 

plasmids are generally largest, while mobilizable plasmids are smallest. I also find that plasmid 

mobility and range are positively correlated. Additionally, I find the correlation between 

plasmid size and range is different depending on the mobility of plasmids. Together, these 

analyses provide a comprehensive study of the variation in key characteristics of bacterial 

plasmids, and are a basis for future work.  

 

In Chapter 4, I test the predictions of two hypotheses for why plasmid sequences are often 

observed to be enriched with A and T bases, compared to chromosomes. These two hypotheses 

suggest that AT-bias is: (1) an adaptation to reduce plasmid cost; (2) an artefact of increased 

mutation and genetic drift in plasmids. To test which of these hypotheses is more likely, I 

explore how plasmid AT-content varies with respect to plasmid mobility and plasmid range. 

Overall, I find more evidence for the hypothesis that AT-bias of plasmids is due to mutation 

and genetic drift. I then discuss how future studies could further explore evidence for these two 

hypotheses.  
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In Chapter 5, I use comparative genomics to provide an initial test of the general observation 

that bacterial species’ genomes become more variable with increasing environmental 

variability. I examine the structure of 126 species’ pangenomes, defined as the total number of 

genes sequenced in a species. I specifically consider how the percentage of core genes, found 

in all genomes of a species, and accessory genes, found in only a subset of genomes, varies 

across bacteria. I then compare these measures to two proxies of environmental variability, 

before discussing limitations and future directions to further explore this question. 

 

In Chapter 6, I summarise and discuss the main results presented in Chapters 2-5. I consider 

what more we now know about a potential role of horizontal gene transfer, and particularly 

plasmids, in bacterial cooperation. Additionally, I discuss how we can define cooperative 

behaviours, and how we can identify cooperative genes in bacteria. I also consider the 

advantages and limitations of using comparative genomics to study bacterial cooperation. 

 

Finally, the appendix contains two additional manuscripts which I contributed to during my 

DPhil. The first tests for signatures of kin selection in the social genes of the bacterial species 

Pseudomonas aeruginosa (Belcher et al. Submitted, PNAS). The second tests the hypothesis 

that genes carried on plasmids have a lower complexity than chromosome genes, and whether 

this holds for genes coding for extracellular proteins, which could act as cooperative public 

goods (Hao et al. Draft, Unsubmitted). 
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Abstract 
Horizontal gene transfer via plasmids could favour cooperation in bacteria, because transfer of 

a cooperative gene turns non-cooperative cheats into cooperators. This hypothesis has received 

support from theoretical, genomic and experimental analyses. In contrast, we show here, with 

a comparative analysis across 51 diverse species, that genes for extracellular proteins, which 

are likely to act as cooperative ‘public goods’, were not more likely to be carried on either: (i) 

plasmids compared to chromosomes; or (ii) plasmids that transfer at higher rates. Our results 

were supported by theoretical modelling which showed that while horizontal gene transfer can 

help cooperative genes initially invade a population, it has less influence on the longer-term 

maintenance of cooperation. Instead, we found that genes for extracellular proteins were more 

likely to be on plasmids when they coded for pathogenic virulence traits, in pathogenic bacteria 

with a broad host-range.  
 

Introduction 
The growth and success of many bacterial populations depends upon the production of 

cooperative ‘public goods’1–4. Public goods are molecules whose secretion provides a benefit 

to the local group of cells. Examples include iron-scavenging siderophores5, exotoxins that 

disintegrate host cell membranes6,7, and elastases that break down connective tissues8–10. A 

problem is that cooperation can be exploited by ‘cheats’: cells which avoid the cost of 

producing public goods but can still use and benefit from those produced by cooperative 
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cells3,11,12. What prevents cheats from outcompeting cooperators, and ultimately destabilising 

cooperation?  

 

In bacteria, some genetic elements are able to move between cells13. This horizontal gene 

transfer has been suggested as a mechanism to help stabilize the production of cooperative 

public goods14–18 (Figure 1a). If a gene coding for the production of a public good can be 

transferred horizontally, it would allow cheats to be ‘infected’ with the cooperative gene and 

turned into cooperators. Theoretical models have shown that this can facilitate the invasion of 

cooperative genes, in conditions where they would not be favoured on chromosomes14–18. 

Experiments on a synthetic Escherichia coli system have shown that location on a plasmid 

helped the gene for a cooperative public good to invade, particularly in structured 

populations18. In addition, bioinformatic analyses across a range of species found that genes 

that code for extracellular proteins, many of which act as public goods, are more likely to be 

found on plasmids than the chromosome15,19,20.  

 

There are, however, three potential problems for the hypothesis that horizontal gene transfer 

favours cooperation. First, previous bioinformatic analyses made important first steps, but are 

not conclusive. One study examined only a single species, which may not be representative  of 

all bacteria15. Two additional studies examined multiple species, but assumed that genes and 

genomes from the same and different species can be treated as independent data points, in a 

way that could have led to spurious results19,20. Statistical tests typically assume that data points 

are independent, and even slight non-independence can lead to heavily biased results (type I 

errors)21,22. There is an extensive literature in the field of evolutionary biology showing that 

species share characteristics inherited though common descent, rather than through 

independent evolution, and so cannot be considered independent data points23–25. Genomes are 

nested within species, and genes are nested within genomes, multiplying this problem of non-

independence, analogous to the problem of pseudoreplication in experimental studies26–29. 

Phylogenetically-controlled bioinformatic analyses are required to address this problem of 

non-independence, and test the robustness of previous conclusions. 

 

Second, from a theoretical perspective, while horizontal gene transfer can favour the initial 

invasion of cooperation, it is not clear if it favours the maintenance of cooperation in the long 

run16. For example, after a plasmid carrying a cooperative gene has spread through a 

population, a loss of function mutation could easily lead to a cheat plasmid evolving, which 
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could then potentially outcompete the plasmid carrying the cooperative gene16,30. Theory is 

required that examines the maintenance as well as the invasion of cooperation, while 

accounting for important biological details, such as how plasmid transmission depends on the 

population frequency of the plasmid, and how frequently plasmids are lost, for example by 

segregation during cell division. 

 

Third, there are alternative hypotheses for why genes coding for extracellular proteins might 

be preferentially carried on plasmids in some species (Figure 1)20,31. Bacteria can rapidly adapt 

to new and/or changing environments by acquiring new genes via horizontal gene transfer, and 

losing genes no longer required but costly to maintain (Figure 1b)32–34. Genes which facilitate 

adaptation to environmental variability are often those which code for molecules secreted 

outside the cell34–37. Consequently, we might expect to find genes for extracellular proteins on 

plasmids to facilitate rapid gain and loss of genes depending on environmental conditions, and 

not because they are cooperative per se. Alternatively, genes may be favoured to be on plasmids 

for reasons other than horizontal gene transfer (Figure 1c)38. For example, a higher plasmid 

copy number offers a mechanism for more expression of a gene, potentially even conditionally, 

in response to certain environmental conditions38. The benefit of being able to regulate gene 

expression in this way could be higher in genes which code for molecules that are secreted 

outside the cell, when different quantities of molecule are required in different environments. 

These different hypotheses are not mutually exclusive. 

 

We addressed all three of these potential problems for the hypothesis that horizontal gene 

transfer favours cooperation. We first tested two predictions that would be expected to hold if 

horizontal gene transfer favours cooperation. Specifically, cooperative genes would be more 

likely to be found on: (i) plasmids relative to chromosomes; (ii) more mobile plasmids relative 

to less mobile plasmids14–20. We used phylogeny-based statistical methods that control for the 

problem of non-independence, analysing 1632 genomes from 51 bacterial species, to examine 

the location of genes that code for extracellular proteins. We then used theoretical models, to 

examine whether horizontal gene transfer facilitates the evolution as well as the initial spread 

of cooperation. 

 

Finally, we also tested alternative hypotheses for why genes coding for extracellular proteins 

might be preferentially carried on plasmids. We used three measures of environmental 

variability to ask whether species which had more variable environments were those most 
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likely to carry genes for extracellular proteins on their plasmids. Additionally, we examined 

one of these measures in more detail, to help determine whether genes for extracellular proteins 

were located on plasmids so that they could be gained and lost easily (Figure 1b), or instead 

because of some additional benefit conferred by plasmid carriage (Figure 1c). 

 

 
Figure 1. Three hypotheses for why selection might favour genes coding 

for extracellular proteins to be located on plasmids. (a) Cooperation 

Hypothesis. Blue cells produce extracellular proteins which act as 

cooperative public goods, while red cells are ‘cheats’ which exploit this 

cooperation. Over time cheats grow faster than cooperators since they forgo 

the cost of public good production. However, because the gene for the 

extracellular protein is located on a plasmid, cooperators can transfer the 

gene to the cheats, turning them into cooperators, increasing genetic 

(a) Cooperation Hypothesis:  Plasmid transfer stabilises cooperation by 'infecting' non-producing cheats  

(b) Gain and Loss Hypothesis:  Plasmid transfer allows gain and loss of genes only useful in certain environments 

Time 

Plasmid transfer 

Envrionment B: extracellular protein required Environment A: extracellular protein not required 

Extracellular 
protein 

Extracellular 
protein production 

Plasmid loss 

Producer 

Non-producer 

Time 

Plasmid 

(c) Beyond Horizontal Gene Transfer Hypothesis:  Location on plasmid confers advantages beyond mobility 

Envrionment  A:  small  quantity  
of  extracellular  protein  required 

Envrionment  B:  large  quantity 
of  extracellular  protein  required 
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relatedness at the cooperative locus, and stabilising cooperation14–18. (b) Gain 

and Loss Hypothesis. The production of the extracellular protein is required 

in some environments, but not others. Transitions between these 

environments can result from temporal or spatial change.  Cells are selected 

to either lose (Environment A) or gain (Environment B) the plasmid coding 

for the production of the extracellular protein. (c) Beyond Horizontal Gene 

Transfer Hypothesis. The location of a gene on a plasmid could provide a 

number of benefits, other than the possibility for horizontal gene transfer38. 

For example, when the quantity of extracellular protein required varies across 

environments (A versus B), plasmid copy number could be varied to adjust 

production38. Created with BioRender.com. 

 

Results  

Genomic Analyses.  
We use the approach developed by Nogueira et al.15,19,20, of using PSORTb39 to predict the 

subcellular location of every protein encoded by 1632 complete genomes from 51 diverse 

bacterial species (Extended Data Figure 1; Table S3). We are also building upon the work of 

researchers who pointed out that extracellular (secreted) proteins are likely to provide a benefit 

to the local population of cells, and hence act as cooperative public goods2,15,19,20,40. The 

advantage of this method is that it allows a large number of genes to be examined, across 

multiple species. 
 

Overall, we found the average bacterial genome had 2696 protein-coding genes on the 

chromosome(s), and 223 on the plasmid(s). Of these, an average of 57 genes (~2%) coded for 

the production of an extracellular protein, with 52 on the chromosome(s) and 5 on the 

plasmid(s). This means, on average, 1.9% of chromosome genes and 2.4% of plasmid genes 

coded for extracellular proteins. To control for the number of genomes per species, we first 

calculated the mean number of genes for each species, and then the mean of these species 

means. Therefore, the values above give an indication of the location of genes coding for 

extracellular proteins in an average genome. Genes with unknown protein localisations were 

not included (Chromosome: 26.2%; Plasmid: 38.3%). Across species, the proportion of genes 

coding for extracellular proteins for plasmid(s) was generally more variable than for the 

chromosome(s) (Figure S2). These patterns are very similar to those found previously3,15,19,20.  
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Extracellular proteins are not overrepresented on plasmids. 
We found that extracellular proteins were not more likely to be carried on plasmids compared 

to chromosomes (Figure 2). The difference in the proportion of genes that coded for 

extracellular proteins between plasmid and chromosome was not significantly different from 

zero across all species (MCMCglmm41; posterior mean = 0.004, 95% CI = -0.063 to 0.057, 

pMCMC= 0.87; n = 1632 genomes; R2 of species sample size = 0.47, R2 of phylogeny = 0.17; 

Table S2, row 1a). This result was robust to alternative forms of analysis. We also found no 

significant difference when we: (i) compared chromosomes to plasmids of only certain 

mobilities (Fig S3; Table S2, rows 20-22); (ii) analysed our data by two alternative methods, 

by looking at the ratio of proportions instead of the difference, or by considering only whether 

the plasmid proportion was greater than the chromosome proportion, removing any effect of 

the magnitude of this difference (Extended Data Figure 2; Table S2, rows 2 and 3). Our 

analyses use a bacterial phylogeny, which assumes plasmid evolution follows bacterial 

phylogeny, but we also found no significant pattern if we ignored phylogeny and analysed 

species as independent data points (Figure 2; Table S2, row 1b; pMCMC = 0.644). 
 

The lack of an overall significant result was clear when looking at the raw data for the different 

species that we examined (Figure 2; Extended Data Figure 2). There was considerable variation 

across species in the location of genes coding for extracellular proteins. Overall, extracellular 

proteins were more likely to be on plasmids in 51% of species (26/51), and more likely to be 

on the chromosome(s) in 49% (25/51) of species (Extended Data Figure 2). For example, in 

Bacillus anthracis genes coding for extracellular proteins were three times more likely to be 

on plasmids, whereas in Acinetobacter baumannii genes coding for extracellular proteins were 

three times more likely to be on the chromosome(s) (Extended Data Figure 2). Clearly, across 

species, genes coding for extracellular proteins are not consistently more likely to be on 

plasmids. 
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Fig 2. Extracellular proteins are not overrepresented on plasmids. For 

each species we calculated the mean difference between plasmid(s) and 

chromosome plasmid
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chromosomes in the proportion of genes coding for extracellular proteins. 

Species in blue have a difference greater than zero, meaning their plasmid 

genes code for a greater proportion of extracellular proteins than 

chromosome genes. Species in red have a difference less than zero, meaning 

their chromosome genes code for a greater proportion of extracellular 

proteins than plasmid genes. Error bars indicate the standard error. The dot 

and error bar at the top of the graph indicate the mean difference and 95% 

Credible Interval given by a MCMCglmm analysis across all species, 

controlling for phylogeny and sample size. We arcsine square root 

transformed proportion data before calculating the difference. Overall, there 

is no consistent trend that genes coding for extracellular proteins are more 

likely to be carried on plasmids (i.e. no consistent trend towards species in 

blue). 

 

As a control, we also analysed the genomic location of the genes coding for all other classes of 

protein (Extended Data Figure 1). Specifically, we analysed genes that coded for the production 

of Cytoplasmic, Cytoplasmic Membrane, Periplasmic, Outer Membrane and Cell Wall 

proteins. We found that none of these protein localisations were significantly overrepresented 

on plasmids or chromosomes across the 51 species (Extended Data Figure 3; Table S2, rows 

5-10). Plasmids are highly variable in the genes they carry. 

 

Importance of controlling for non-independence of genomes. Our results contrast with 

previous studies, which found that plasmid genes code for proportionally more extracellular 

proteins than chromosomes15,19,20. The first of these studies found this pattern across 20 

Escherichia coli genomes15. We also found that genes coding for extracellular proteins in E. 

coli were more likely to be found on plasmids (Figure 2; Extended Data Figure 2). However, 

Figure 2 shows that this is not a consistent pattern across species: approximately half (25/51) 

of the species we analysed showed a pattern in the opposite direction, with genes coding for 

extracellular proteins more likely to be on their chromosome(s) than their plasmid(s).  

 

Two subsequent, multi-species studies found that plasmid genes were significantly more likely 

to code for extracellular proteins than chromosome genes19,20. These studies used statistical 

tests such as Wilcoxon signed-rank test to ask whether there was a consistent pattern, using 

bacterial genomes as independent data points. When we analysed our data with the same 
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statistical methods used in these studies, we also obtained a significant result (Wilcoxon 

signed-rank test; V= 826530, p-value <0.001, R2 = 0.385; n = 1632 plasmid-chromosome 

pairs). When analysing other questions, Garcia-Garcera & Rocha20 used MCMCglmm to 

control for phylogeny. 

 

Why does using bacterial genomes as independent data points lead to a significant result? By 

using a Wilcoxon signed-rank test, at the level of the genome, we are implicitly assuming that 

all the genomes analysed are: (i) independent from one another; (ii) a representative sample of 

bacteria in nature. Neither of these are true for multi-species genomic datasets. First, due to 

shared ancestry, species are not independent from one another, and so neither are genomes in 

such analyses24,42. Even a slight lack of independence can lead to heavily biased results in 

statistical analyses and spurious conclusions21. Second, genomic databases tend to have a 

disproportionate abundance of certain species and genera. This will bias the results towards 

commonly sequenced species.  

 

Consequently, when asking questions across species, it is inappropriate to treat all the genomes 

in genomic datasets as independent data points. When we performed an analysis analogous to 

the Wilcoxon signed-rank test, using the same untransformed data which produced a significant 

result above, but controlled for the number of genomes per species and the non-independence 

of species, we no longer found any significant difference between the proportion of plasmid 

and chromosome genes coding for extracellular proteins (MCMCglmm; posterior mean = 

0.017, 95% CI = -0.021 to 0.057, pMCMC = 0.332; n = 1632 plasmid-chromosome paired 

differences in extracellular proportion; R2: species sample size = 0.46, phylogeny = 0.34; Table 

S2, row 4). Furthermore, we found that the number of genomes per species and the non-

independence of species explained 46% and 34% of the variation in data respectively (paired 

plasmid and chromosome differences across our 1632 genomes). Taken together, this 

illustrates that it is not our data which disagrees with previous studies, but instead our use of 

statistical analyses appropriate for multi-genome, multi-species datasets23–25.   

 

These data also illustrate the importance of examining effect sizes, and not just whether results 

are statistically significant. With large sample sizes it is possible to get results that are 

significant but not biologically important. The percentage of variance explained that is 

considered biologically significant can depend upon the kind of data you are examining and 

the field of research, but a baseline of 5-10% seems reasonable for many areas of evolutionary 
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biology (Supp. Info. 1)43–45. When bacterial genomes are assumed to be independent data points 

in across species analyses, this leads to inflated sample sizes. Consequently, even when results 

are statistically significant at P<0.05, they can still only explain 1-2% of the variation in the 

data, which is clearly not biologically significant. The flip side of such considerations is that 

effects sizes and examination of raw data at the species level (e.g. Figure 2) are also useful 

checks against non-significant results due to a lack of statistical power (type II errors). 

 

Plasmids with higher mobility do not carry more genes for extracellular 

proteins.  
We then tested another prediction of the cooperation hypothesis: cooperation is more likely to 

be favoured when coded for on more mobile plasmids14–18. We used data from the MOBsuite 

database to assign plasmids to one of three levels of mobility (Fig 3a)46,47. We classify: 

conjugative plasmids, which carry all genes necessary to transfer, as the most mobile; 

mobilizable plasmids, which are dependent upon conjugative plasmids’ machinery to transfer, 

to have intermediate mobility; non-mobilizable plasmids, which cannot be transferred via 

conjugation, to be the least mobile (Fig 3a)46,48.  
 

Genes coding for extracellular proteins were not more likely to be on plasmids with higher 

transfer rates (Figure 3b). Examining the slope of the regression between plasmid mobility and 

the proportion of genes coding for extracellular proteins, we found no consistent pattern across 

species (MCMCglmm; posterior mean = 0.006, 95% CI = -0.040 to 0.052, pMCMC = 0.73; n 

= 40; Table S2, row 11). This lack of a significant relationship was robust to different forms of 

analysis, including an examination of the means of each mobility type of each species (Figure 

S4; Table S2, row 12). We also found no correlation between the proportion of a species’ 

plasmids which can transfer and how overrepresented or underrepresented extracellular 

proteins are on plasmids compared to chromosomes (Extended Data Figure 4; Table S2, rows 

16 and 17).   

 

To examine our assumption that mobilizable plasmids are likely to be less mobile than 

conjugative plasmids, we examined how frequently these two kinds of plasmids co-occurred 

within a genome. If mobilizable plasmids are present in the same cell as conjugative plasmids, 

they could be transmitted at similar rates. However, we found that of genomes with a 

mobilizable plasmid(s), 60% did not also carry a conjugative plasmid (434/727). In addition, 
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when mobilizable plasmids did co-occur with a conjugative plasmid, they did not have a higher 

proportion of genes coding for extracellular proteins (Supp. Info. 1; Figure S6). A caveat here 

is that our estimates of transfer rates across different types of plasmid is relative, and it would 

be very useful to obtain quantitative estimates of transfer rates. 

 

 
Figure 3. Plasmid mobility and extracellular proteins. (a) We divided plasmids into three 

mobility types: non-mobilizable (lowest or no mobility); mobilizable (intermediate mobility); 

conjugative (highest mobility). Blue cells are potential plasmid donors, while red cells are 
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potential recipients. Each panel shows when plasmid transfer is possible for one of the three 

plasmid mobility types. Non-mobilizable plasmids cannot be transferred. Mobilizable plasmids 

cannot be transferred alone, but they carry enough genes to ‘hijack’ the machinery of a 

conjugative plasmid that is in the same cell. Conjugative plasmids carry all genes necessary to 

transfer independently. Created with BioRender.com. (b) The 40 species which carried 

plasmids of all three mobilities are shown, with a panel for each of these species. Dots in each 

panel indicate the mean % of genes coding for extracellular proteins of all plasmids of each 

mobility level. The lines are the linear regression of these three points, coloured blue if the 

slope is positive and orange if the slope is negative. Note that each row of species has a different 

y-axis scale, indicated on the left, which applies to all species in that row. We arcsine square 

root transformed proportion data before calculating the mean for each species, and then back-

transformed these values for display of the data. Overall, there is no consistent trend for genes 

that code for extracellular proteins to be on more mobile plasmids. 
 

Theoretical Stability of Cooperation 
Our empirical results did not support the theoretical prediction that cooperative genes should 

be overrepresented on plasmids, relative to the chromosome14–18,49. Consequently, we then 

extended existing theory, to examine whether we could find conditions where cooperative 

genes were not predicted to be overrepresented on plasmids. We investigated the consequences 

of two factors: (1) allowing for a greater range of possible genetic architectures, especially 

plasmids that lacked the gene for cooperation (non-cooperative or ‘cheat’ plasmids); and (2) 

examining the evolutionary stability (maintenance) of cooperation, not just its initial 

invasion16,49.  

 

We examined two possible reasons for why cooperative genes could be overrepresented on 

plasmids, relative to the chromosome. First, horizontal gene transfer on a plasmid could allow 

cooperation to be favoured in conditions where it would otherwise not be favoured14–18. For 

example, because plasmid transfer can turn non-cooperators into cooperators, and increase 

relatedness at the loci for cooperation17. Second, even if horizontal gene transfer did not 

increase the range of biological scenarios (parameter space) where cooperation was favoured, 

there could be selection for cooperation to be coded for on a plasmid, rather than a 

chromosome. 
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We assumed an infinite population of haploid individuals (bacterial cells). Individuals may 

carry a cooperative gene, that codes for public goods production, either on a plasmid, or the 

chromosome, or both (redundancy). We also allowed for the possibility of: non-cooperative 

plasmids and chromosomes; plasmid-free cells; a cost of plasmid carriage (CC). 

 

Each generation, the population is divided into patches, each founded by N independent cells. 

Cells reproduce clonally until there are a large number of cells per patch. Cells are then 

randomly shuffled into pairs on their patch and, if a plasmid-free individual has a plasmid-

bearing partner, with probability β, the plasmid-free individual acquires a copy of its partner’s 

plasmid (horizontal gene transfer). Individuals with a gene for cooperation then produce a 

public good, at a cost CG, which generates a benefit B that is shared between all members of 

the patch. Individuals then survive according to their fitness. Plasmid-bearing individuals lose 

their plasmid with probability s. Finally, individuals disperse to found new patches. 

 

Consistent with previous analyses, we found that, in the short term, horizontal gene transfer on 

a plasmid can initially help cooperation invade (Figure 4)14–18. Horizontal gene transfer 

increased the frequency of cooperation, by turning non-cooperators into cooperators, which 

also increases relatedness at the cooperative locus on the plasmid14–18,49. Relatedness is 

increased because, in the short term, whilst plasmids are spreading from rarity, there are many 

plasmid-free cells available, meaning plasmids have many opportunities to be transferred, 

generating genetic similarity. 

 

In contrast, we found that transfer on a plasmid did not appreciably increase the range of 

parameter space where cooperation was maintained at evolutionary equilibrium (Fig 4a & 5) 

(Supp. Info. 4). First, in the absence of plasmid loss (s=0), cooperation was only favoured when 

RB-CG>0, where R is the genetic relatedness at the chromosomal (individual) level (R=1/N). 

Cooperation was therefore only favoured on the plasmid when it provided a kin selected benefit 

at the level of the chromosome (individual), as predicted by Hamilton’s rule50,51.  

 

The reason for this result is that, in the absence of plasmid loss (s=0), plasmids continue to 

increase in frequency after invasion, ultimately reaching fixation in the population. This means 

that, in the long term, there are no plasmid-free individuals left to infect, which means that the 

overall level of horizontal gene transfer in the population goes to zero. Consequently, 
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competition between plasmids with and without a cooperative gene (cooperators and cheats) 

becomes analogous to the scenario in which the gene for cooperation is on the chromosome17. 

 

Second, when plasmids can be lost (s>0), this can favour cooperation on plasmids, but only in 

certain areas of parameter space (Figure 5). Plasmid loss means that plasmids do not reach 

fixation in the population, and so some plasmid transfer still occurs in the evolutionary long 

term, increasing relatedness at the cooperative plasmid locus. This increased relatedness may 

favour cooperation on the plasmid, when it would not otherwise be favoured on the 

chromosome, if plasmids are transferred rapidly (high β) and rates of plasmid loss are 

intermediate (Figure 5). Specifically, plasmids need to be lost quickly enough that plasmid 

relatedness appreciably deviates from chromosomal relatedness, but not too quickly that 

plasmids are not maintained (Figure 5). Another factor that might prevent plasmids from 

reaching fixation is if there was a constant, high influx of plasmid-free cells (immigration). 

 

Overall, our model suggests that horizontal gene transfer can help cooperation initially invade, 

but will then often have less influence on whether cooperation is maintained in the long term 

(Figures 4 & 5). We are not saying that horizontal gene transfer can never favour cooperation, 

just that there is an appreciable area of parameter space where it does not. Consequently, our 

model provides an explanation for why cooperative genes are not consistently overrepresented 

on plasmids (Figures 2 & 3). An analogous theoretical result for the case without plasmid loss 

(s=0) was also found in a meta-population model by Mc Ginty et al.16. Our predictions are 

consistent with experiments carried out by Bakkeren et al.30, who found that location on a 

conjugative plasmid could help a cooperative trait invade in Salmonella Typhimurium (S.Tm), 

but that this was only stable with strong population bottlenecks (high relatedness). Dimitriu et 

al.18 found that cooperative plasmids were favoured in structured but not well-mixed 

populations, and that cooperation was favoured more during ‘epidemic spreads’ into a 

population. 

 

In addition, we found that, when cooperation is favoured, cooperative traits are not more likely 

to be favoured on, or transferred to, plasmids. The reason is that, when cooperation is favoured, 

non-cooperators (cheats) are purged from the population, which means there is no extra fitness 

benefit of coding for the cooperative trait on a plasmid rather than the chromosome. 

Consequently, our results suggest that horizontal gene transfer only favours cooperation in a 

restricted area of parameter space. Although, there could be interesting transient dynamics, 
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with cooperation being favoured temporarily (Figure 4), or when cooperation has other 

consequences, such as increasing plasmid transmission52,53. Another important factor is the rate 

of horizontal gene transfer. While plasmids clearly transmit fast enough to influence evolution, 

the transfer rates per cell per generation might not be high enough to significantly influence 

relatedness at the locus for cooperation (i.e. a high enough β)54.  

 

 
Figure 4. Plasmids facilitate the invasion but not the maintenance of cooperation. In parts 

(a) and (b), we plot the results of our theoretical model for the case when there is no plasmid 

loss (s=0). (a) Cooperation is only maintained at equilibrium (green shaded area) when it is 

favoured at the chromosomal level !" > $! , which is unaffected by plasmid transfer (β). (b) 

Plasmids can facilitate the invasion and initial spread of cooperation (blue line shoots above 

red line), but cooperative plasmids are eventually outcompeted by cheat plasmids (red line goes 

to 1). We note that, in (b), all individuals are chromosomal defectors – chromosomal 

cooperation was permitted, but did not evolve in this run. To generate the plots in (a) and (b), 

we assumed the following parameter values: (a & b) " = 	1.435,$! = 0.1, $" = 0.2; (b) β =
0.5, N = 16.  
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Figure 5. Plasmid loss can favour the maintenance of cooperation. We plot the results of 

our theoretical model for different levels of plasmid loss (s=0-1). The areas encapsulated by 

the coloured lines show the regions of parameter space where cooperation is polymorphic at 

equilibrium (i.e. population comprises some cooperators & some defectors). When plasmid 

loss is absent (s=0), there is no polymorphism (encapsulated area collapses to nothing), 

meaning cooperation is only maintained at equilibrium (at fixation) when it is favoured at the 

chromosomal level !" > $! (to the left of the black dotted line) (R=1/N). When plasmid loss 

is intermediate (s=0.1,0.2,0.3,0.4), cooperation can be polymorphic at equilibrium 

(encapsulated areas), with cooperation being disfavoured in the encapsulated areas to the left 

of the black dotted line, and favoured in the encapsulated areas to the right of the black dotted 

line, relative to when plasmids are absent (β=0). When plasmid loss is high (s≥0.5), or when 

transmission (β) is low, plasmids fail to persist at equilibrium, meaning they have no long-term 

effect on cooperation (encapsulated areas collapse to nothing). Overall, plasmid loss can 

facilitate cooperation, but only if plasmid loss (s) is intermediate and transmission (β) is high. 

To generate this plot, we assumed the following parameter values:	" = 	1.435,$! = 0.1, $" =
0.2 (same as Fig. 4). 
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Alternate hypotheses 
Finally, we examined whether alternate hypotheses may better explain the considerable 

variation in the location of genes coding for extracellular proteins across species. Species which 

live in more variable environments may be more likely to carry extracellular genes on plasmids. 

This could be expected for different reasons, including plasmid transfer allowing genes for 

different environments to be gained and lost (Figure 1b), or plasmids conferring some other 

advantage not associated with horizontal gene transfer, such as allowing copy number to be 

conditionally adjusted (Figure 1c)31,32,38,55. There are a number of different ways to classify 

environmental variability, and so we used three different methods.  
 

Broad host-range pathogens are most likely to carry genes for extracellular proteins on 

plasmids. We first used the diversity of pathogen hosts as a proxy for environmental 

variability. Although this does not capture all environmental variability experienced by species 

in our data set, pathogenicity is a key aspect of bacterial lifestyle that has been suggested to be 

important for plasmid gene content, such as antibiotic resistance and virulence factors6,40,56,57. 

We divided species into three categories: pathogens with broad host-range, pathogens with 

narrow host-range, and non-pathogens. Broad host-range pathogens are expected to encounter 

more variable environments than narrow host-range pathogens. 

 

We found that pathogens with a broad host-range were more likely to carry genes coding for 

extracellular proteins on their plasmids, compared with both narrow host-range pathogens and 

non-pathogens (Fig 6a). Specifically, we compared the difference in the proportion of genes 

coding for extracellular proteins between plasmid(s) and chromosome(s) across these three 

categories of species (MCMCglmm; Narrow compared to Broad host-range pathogens: 

posterior mean = -0.222, 95% CI = -0.322 to -0.123, pMCMC = <0.001; Non-pathogens 

compared to Broad host-range pathogens: posterior mean = -0.161, 95% CI = -0.252 to -0.067, 

pMCMC = <0.001; n = 701 genomes; R2 of pathogenicity/host-range = 0.35, R2 of species 

sample size = 0.28, R2 of phylogeny = 0.11; Table S2, row 23). There was no significant 

difference between narrow host-range pathogens and non-pathogens in the proportion of genes 

coding for extracellular proteins on their plasmids compared to chromosome(s) (MCMCglmm; 

Non-pathogens compared to Narrow host-range pathogens: posterior mean = 0.031, 95% CI = 

-0.065 to 0.127, pMCMC = 0.482; n = 389; Table S2, row 25). These patterns hold irrespective 
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of whether we included species that we could not reliably classify into either category, such as 

opportunistic pathogens, in our analyses (Extended Data Figure 5).  
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Figure 6. Pathogenicity, host-range and the location of genes coding for extracellular 

proteins. We have divided species into either pathogens or non-pathogens, with pathogens 

further categorised into those with a narrow or broad host-range. The y-axis in (a) shows the 

difference in the proportion of genes on plasmids and chromosomes coding for extracellular 

proteins – this is the same as the x-axis in Figure 2. The y-axes in (b)(i) and (b)(ii) show the 

difference in the proportion of a subset of genes coding for extracellular proteins on plasmids 

and chromosomes which are predicted by MP3 as either (i) pathogenic or (ii) non-pathogenic. 

Each dot is the mean for all genomes in a species. Species in blue are those with the relevant 

subset of extracellular proteins overrepresented on plasmids, while species in red are those with 

the subset of extracellular proteins overrepresented on chromosomes. (c) Phylogeny based on 

recently published maximum likelihood tree using 16S ribosomal protein data64. The inner ring 

indicates whether extracellular proteins were more likely to be coded for on the plasmid(s) or 

chromosome(s), as in Figure 2. The outer ring indicates how we classified each species’ 

pathogenicity, and the presence or absence of diagonal lines for pathogens indicates narrow or 

broad host-range, respectively. Species with a pink or green label in the outer ring are those 

included in (a) and (b), since for these we could be reasonably confident of whether or not 

pathogenicity was an important and consistent aspect of their lifestyle. Overall, pathogens with 

a broad host-range are more likely to have genes coding for extracellular proteins, and 

particularly those involved in pathogenicity, on their plasmids. 

 

Plasmids of broad host-range pathogens carry many pathogenicity genes. We suspected 

that the additional extracellular proteins coded for by plasmids of broad host-range species, 

compared to narrow host-range species, may be particularly involved in facilitating 

pathogenicity40,56,57. To investigate this, we used the program MP358 to assign each 

extracellular protein as either ‘pathogenic’ or ‘non-pathogenic’. 

 

We found that plasmids of broad host-range pathogens were particularly enriched with 

extracellular proteins involved in facilitating pathogenicity, compared to plasmids of narrow 

host-range species (Figure 6b(i)). Specifically, we found that pathogens with a broad host-

range were significantly more likely to code for pathogenic extracellular proteins on their 

plasmids compared to narrow host-range species (Figure 6b(i)) (MCMCglmm; Narrow 

compared to Broad host-range pathogens: posterior mean = -0.209, 95% CI = -0.350 to -0.086, 

pMCMC = 0.012; n=474 genomes; Table S2, row 26). In contrast, the relative location of non-

pathogenic extracellular proteins did not vary between broad and narrow host-range pathogens 
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(Figure 6b(ii)) (MCMCglmm; Narrow compared to Broad host-range pathogens: posterior 

mean = -0.036, 95% CI = -0.115 to 0.040, pMCMC = 0.296; n=474 genomes; Table S2, row 

27). Consequently, the excess of genes coding for extracellular proteins on the plasmids of 

broad host-range species (Figure 6a) appears to arise due to an excess of pathogenicity genes 

coding for extracellular proteins (Figure 6b). 

  

Most genomic databases are biased towards species that interact with and/or infect humans, so 

we examined whether human pathogens had driven the above results. In our dataset, 5 out of 

10 broad host-range species and 3 out of 5 narrow host-range species can infect humans. We 

found no significant difference in how likely both pathogenic and non-pathogenic extracellular 

proteins were to be on plasmids of human pathogens compared to non-human pathogens. We 

also found that while host-range had a significant effect on how likely plasmids were to code 

for pathogenic extracellular proteins, whether a species could infect humans had no significant 

effect (Table S2, rows 28 to 30).  

 

Pathogenic extracellular proteins could be preferentially coded for on plasmids to facilitate 

their gain and loss (Figure 1b: Gain and loss hypothesis), or because of some other benefit 

provided by being carried on a plasmid (Figure 1c: Beyond horizontal gene transfer 

hypothesis). We tested these possibilities by examining whether pathogenic extracellular 

proteins were more likely to be on plasmids that transfer at higher rates. This would be 

predicted by the gain and loss hypothesis, but not the beyond horizontal gene transfer 

hypothesis. We found that plasmids with higher mobility did not code for more pathogenic 

extracellular proteins. Specifically, across broad host-range pathogen species, the slope of the 

regression between plasmid mobility and the proportion of genes coding for pathogenic 

extracellular proteins was not consistently positive (Figure S7) (MCMCglmm; posterior mean 

= -0.020, 95% CI = -0.224 to 0.185, pMCMC = 0.774; n=7; Table S2, row 31). This lack of a 

significant relationship was robust to additional forms of analysis, such as considering all 

pathogenic species, including narrow host-range pathogens and those not carrying plasmids of 

all three mobility types (Figure S8; Table S2, rows 32 and 33). 

 

Taken together, our results are most consistent with the hypothesis that genes coding for 

extracellular proteins are overrepresented on plasmids when plasmid carriage provides a 

benefit other than mobility (Figure 1c). A number of other factors may influence which genes 

are carried on plasmids, beyond horizontal gene transfer. First, there is evidence that increasing 
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the copy number of plasmids can lead to increasing rates of evolution in the genes they carry59, 

and it also may act as a mechanism to increase the expression of genes carried on plasmids60,61. 

For example, increased expression of genes coding for extracellular public goods such as 

virulence factors could help invasion of a host and utilisation of host resources. This could be 

particularly beneficial for broad host-range pathogens that frequently invade a variety of 

different hosts. Copy number of plasmids has also recently been shown to lead to genetic 

dominance effects55, with likely implications for the phenotypes of genes selected for plasmid 

carriage55. Second, plasmids compete with their bacterial hosts for resources such as replication 

machinery and nucleotides62,63. To resolve this competition, plasmids should be under selection 

to reduce their cost to the host, with a likely impact on their gene content. For example, 

extracellular proteins are, on average, cheaper to produce than intracellular proteins15,20. 

Plasmid-host competition could consequently select for plasmids to carry more genes coding 

for cheaper proteins, and so more extracellular proteins. Our conclusion here should be seen as 

tentative, as some form of the gain and loss hypothesis (Figure 1b) could still be argued to be 

consistent with the data, if it is just the potential for horizontal gene transfer that matters, and 

not the rate. 

 

Number of environments and core vs accessory genes. To further examine a potential 

association with environmental variability, as could be predicted by both hypotheses b (“Gain 

and Loss”) and c (“Beyond Horizontal Gene Transfer”), we also looked at two additional 

measures of environmental variability: (i) the number of five broad environments a species was 

sequenced in20,65,66; (ii) the proportion of a species’ genomes that is composed of ‘core’ genes, 

which are those found in all genomes of the species – species which experience more variable 

environments appear to have relatively smaller core genomes32. We found no significant 

correlation between either of these measures and the likelihood that genes coding for 

extracellular proteins were carried on plasmids (Extended Data Figure 6) (Supp. Info. 1; Table 

S2, rows 35 and 37). Garcia-Garcera & Rocha20 previously analysed a different but related 

question, examining the type of environment, and also used a MCMCglmm to control for the 

phylogenetic structure of the data (Supp. Info. 1). Our finding of no correlation between these 

two measures of environmental variability and whether plasmids code for extracellular proteins 

is in contrast to our above results with respect to pathogen host-range (Figure 6). This suggests 

that hypothesis c, which our data is most consistent with, may be important for pathogens in 

particular, but not necessarily across all bacterial species and lifestyles. 
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Complementary Analyses 
There a number of directions in which our analyses could be expanded. We focused on 

plasmids because they have been the focus of previous theoretical and empirical work14,16–18. 

Other mobile genetic elements include bacteriophages and integrative conjugative 

elements67,68. Comparing core and accessory genes could be a potential way to lump all causes 

of horizontal gene transfer15,19. We considered the relative transfer rates among mobility types; 

quantitative estimates of plasmid transfer rates would be very useful for further examination of 

plasmid mobility48,54,69–71. We followed previous genomic studies by using extracellular 

proteins as indicators of cooperative traits2,15,19,20. The advantages of this approach are that: (i) 

we could compare our results with those from previous studies; (ii) secretion systems are highly 

conserved, allowing us to examine a large number of species, where detailed genetic 

annotations are lacking; (iii) cooperation mediated by extracellular proteins is usually 

controlled by only one gene, making them potentially more suitable for plasmid carriage 

compared to cassettes of multiple genes72,73. However, while extracellular proteins are likely 

to be cooperative traits, not all cooperative genes code for extracellular proteins (e.g. secondary 

metabolites such as siderophores), and not all extracellular proteins are involved in cooperation 

(e.g. those involved in motility such as flagellin). It would be very useful to examine more 

detailed annotations of social genes, and expand to other mobile genetic elements. 

 

Discussion 
We found no support for the hypothesis that horizontal gene transfer generally favours 

cooperation. Our genomic analyses showed that extracellular proteins are not: (i) 

overrepresented on plasmids compared to chromosomes (Figure 2); (ii) more likely to be 

carried by plasmids that transfer at higher rates (Figure 3). These patterns could be explained 

by our theoretical modelling, which showed that while horizontal gene transfer may help 

cooperation to initially invade a population, it has less influence on the maintenance of 

cooperation in the long term (Figures 4 & 5). Once plasmids become common, cheat plasmids 

that do not code for cooperation are able to outcompete cooperative plasmids, analogous to 

selection at the level of the chromosome16,30. Our results suggest that horizontal gene transfer 

on plasmids has not consistently favoured cooperation across bacterial species – but it is still 

possible that horizontal gene transfer could have an influence in certain scenarios or species. 

In contrast, we found that genes coding for extracellular proteins involved in pathogenicity and 

virulence are preferentially located on plasmids in pathogens with a broad host-range (Figure 
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6). These pathogenic virulence genes were not preferentially located on plasmids that transfer 

at a higher rate, suggesting that the benefit of being located on a plasmid is something other 

than horizontal gene transfer, such as the ability to vary copy number.  

 

Methods 

Genome Collection 
We retrieved 1632 complete genomes comprising 51 bacterial species from GenBank RefSeq 

(https://www.ncbi.nlm.nih.gov) between February-November 2019. We used species on panX 

(http://pangenome.tuebingen.mpg.de)74 as a list of potential species for our dataset, since these 

comprise the most sequenced bacterial species. To allow comparison of chromosome and 

plasmid genes within the same genome, we only retrieved genomes that contained at least one 

plasmid sequence. We included species with 10 or more RefSeq genomes with one or more 

plasmids available in our analysis. We retrieved up to 100 genomes for each species; this was 

either all complete genomes available for the species, or a random sample where more than 

100 were available. Where two or more genomes had the same strain name, we randomly 

retrieved one genome to reduce the risk of pseudoreplication. 

 

Prediction of Subcellular Location of Proteins 
We used PSORTb v.339 to predict the subcellular location of every protein encoded by each 

genome in our dataset. We used a Docker image of PSORTb developed by the Brinkman Lab, 

available at: https://github.com/brinkmanlab/psortb_commandline_docker. We chose 

PSORTb because it is widely regarded as one of the best performing programs of its kind75. It 

has also been used in previous analyses to identify ‘cooperative’ genes and/or extracellular 

proteins in bacteria15,20. The program has a number of modules which are trained to recognise 

particular features of proteins. Results from these modules are combined to give a Final 

Prediction for each protein. We consulted the literature to confirm the Gram stain of each of 

our species. For Gram-positive species, PSORTb assigns proteins to one of four locations 

within the cell: cytoplasmic, cytoplasmic membrane, extracellular or cell wall (Extended Data 

Figure 1). The locations for Gram-negative species are the same, except that cell wall is 

replaced with outer membrane and periplasmic, meaning there are five possible locations for 

proteins of Gram-negative species (Extended Data Figure 1). We used these predicted locations 

throughout all subsequent analyses in this work. PSORTb could not reliably assign a 
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subcellular location to 27% of proteins we analysed, giving a final prediction of ‘unknown’ 

(Table S1). Unless explicitly stated, we did not include these unknown proteins in our analyses.  
 

Predicting Plasmid Mobility 
We also predicted the mobility of every plasmid in our dataset using the MOB-typer tool of 

the program MOBsuite46. This searches for features of plasmid sequences including the origin 

of transfer (oriT), relaxase and mating-pair formation to give each plasmid one of three 

mobility predictions: (i) conjugative, where plasmids encode all machinery required to transfer 

via conjugation; (ii) mobilizable, where plasmids do not encode all machinery, but encode oriT 

and/or relaxase, allowing them to ‘hijack’ another plasmid’s conjugation machinery and 

mobilize; (iii) non-mobilizable, where plasmids do not encode the genes necessary to be 

mobilized by themselves or other plasmids, and so cannot transfer via conjugation. 628 of the 

4150 plasmids in our dataset were flagged as ‘unverified’ against the MOBsuite dataset, 

meaning their mobility prediction was unreliable and they were not included. This left 3522 

plasmids for subsequent analysis. 

 

Effect of Mobility on Plasmid Extracellular Protein Content 
We next examined how plasmid mobility correlates with each plasmid’s extracellular protein 

proportion. As part of its mobility prediction, MOBsuite46 identifies sequences within each 

plasmid involved with conjugation. To control for the possibility that conjugative plasmids, by 

definition of being conjugative, must carry genes controlling this process, we subtracted the 

total number of these sequences from the total number of proteins when calculating the 

extracellular proportion of each plasmid. This is a highly conservative control, since it assumes 

none of the proteins predicted as extracellular are involved in conjugation. We did all analyses 

on these data with and without removing these mating-pair accessions to ensure any results 

were not affected by factors unrelated to plasmids’ extracellular protein content.  

 

Additionally, we used the plasmid mobility predictions to ask whether differences in the 

mobility of species’ plasmids correlated with whether genes encoding extracellular proteins 

are overrepresented on plasmids compared to chromosomes. We calculated the proportion of 

plasmids in each genome capable of transferring via conjugation (conjugative and mobilizable 

plasmids), and averaged across all genomes to give a general measure of the mobility of each 

species’ plasmids. 
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Measures of Bacterial Lifestyle and Environmental Variability 
We classified a species as pathogenic if it was described in the literature as an obligate or 

facultative pathogen. Given some bacterial species only rarely act as pathogens, such as 

opportunistic pathogens, we only included species where we could be sure pathogenicity was 

a key aspect of their lifestyle and a regular selection pressure acting on their genome content. 

For this reason, we decided not to include species described as opportunistic pathogens in the 

literature and those which frequently live as commensals in their hosts. We classified non-

pathogens as species which are strictly environmental (never live in hosts) or strictly mutualists 

and/or commensals (never cause pathogenicity in their hosts). There were 26 species we could 

not definitively assign to either of these categories. These were not included in our main 

analyses, although we carried out additional analyses to ensure that removing these species did 

not bias our results (Extended Data Figure 5).  

 

To estimate the host-range of pathogens, we used information from the literature to determine 

the maximum taxonomic level of hosts each species is able to invade. We defined narrow host-

range species as those which can invade either only one host species, or host species within the 

same genus or family. In contrast, we defined broad-host range pathogens as those capable of 

invading host species within the same order, class or phylum. For example, Xanthomonas citri 

acts as a plant pathogen within the genus Citrus76, while Pseudomonas syringae acts as plant 

pathogen across multiple orders of flowering plants77. For more details and references to the 

literature used for this classification, please see Table S3. 

 

We completed additional analyses for other two measures and proxies of environmental 

variability, the details and results of which can be found in Supp. Info. 1. In brief, we used 

previously published data which classified the habitat diversity of species using 16S RNA 

environmental datasets across five broad habitats: water, wastewater, sediment, soil and 

host65,66. We also supplemented this with information from the literature for species not 

included in the published data. We used this to ask whether species which lived in multiple 

habitats had genes encoding extracellular proteins more overrepresented on their plasmids. 

 

We also looked at bacterial pangenomes as a proxy for environmental variability, since it has 

been noted that species with a high % of accessory genes, defined as genes found in only a 
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subset of genomes within a species, are generally those with more variable environments. All 

pangenome data was collected from panX74 (http://pangenome.tuebingen.mpg.de), since this 

calculates the pangenome using the same method across all of our species. 

 

Pathogenicity categorisation of extracellular proteins 
We used MP358 to examine the pathogenicity of extracellular protein-coding genes in broad 

host-range and narrow host-range pathogens. MP3 compares protein sequences to a curated 

dataset of proteins known to be involved in various aspects of pathogenicity: adhesion, 

invasion, secretion and resistance58. MP3 uses two modules to produce a ‘Hybrid’ prediction 

for each protein: either ‘Pathogenic’ or ‘Non-Pathogenic’. We used MP3 with default 

parameters to gain this prediction for every extracellular protein in all genomes of broad and 

narrow host-range species. MP3 was unable to give a prediction for approximately 9% of 

extracellular proteins, and so these were not included in this analysis. 

 

For each genome in broad and narrow host-range pathogens, we summed the MP3 predictions 

to give the total number of ‘Pathogenic’ and ‘Non-Pathogenic’ extracellular proteins on the 

chromosome and on the plasmid(s). We then calculated the proportions of plasmid and 

chromosome genes which code for ‘Pathogenic’ and ‘Non-Pathogenic’ extracellular proteins.  

 

Statistical analyses 
MCMCglmm. Many commonly used statistical methods in biology require data points to be 

independent from one another. However, due to shared ancestry, species cannot be considered 

as independent data points24. Recently developed statistical methods now allow for 

phylogenetic relationships to be controlled for within mixed effects models. For all statistical 

analyses we used the MCMCglmm (Markov Chain Monte Carlo generalised linear mixed 

effects model) package in R with phylogeny a random effect41,78. This means the phylogeny is 

implemented in the model as a covariance matrix of the relationships between species, which 

is controlled for when considering whether patterns exist across species41,78. We also included 

sample size as a random effect when analysing at the genome level to control for differences 

in the number of genomes per species. Specific details of each model can be found in Table 

S2. We extracted from each model the posterior mean, 95% Credible Intervals (functionally 

similar to 95% Confidence Intervals), and the pMCMC value (generally interpreted in a similar 
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way to a ‘p-value’). We also calculated R2 values for models of particular interest using 

methods described in79,80. A detailed description of MCMCglmm can be found elsewhere41,78.  

 

The response variable in all of our analyses is either a proportion or a measure calculated from 

proportions. Proportion data is bound between 0 and 1 and has a non-normal distribution. To 

control for this, all proportion data in our analyses has been arcsine square root transformed to 

improve normality.  

 

Phylogeny. To control for species relationships, we generated a phylogeny including all 51 

species in our dataset (Figure S1). We used a recently published maximum likelihood tree using 

16S ribosomal protein data as the basis for our phylogeny64. This tree of life typically had only 

one representative species per genus. We used the R package ‘ape’ to extract all branches 

matching species in our dataset81. In cases where the genus representative was different to the 

species in our dataset, we swapped the tip name with our species, since all members of the 

same genus are equally related to members of a sister genus. In cases where we had multiple 

species within a single genus in our dataset, we used the R package ‘phylotools’ to add these 

species as additional branches into their genus82. We used published phylogenies from the 

literature to add any within-genus clustering of species’ branches. We used this phylogeny in 

nexus format for all our MCMCglmm analyses (Fig S1, Table S2). Methods are also available 

to control for uncertainty in phylogenetic reconstruction83,84, although we have not done this 

here. 

 

Data Availability Statement 
The dataset of genomes analysed during this study, including PSORTb results and plasmid 

mobility predictions of MOBsuite, will be made available in the public repository Dryad when 

published at the following DOI: https://doi.org/10.5061/dryad.gxd2547n4 

 

Code Availability Statement 
Code used to solve equations in the theoretical modelling section of the paper can be found at: 

https://github.com/ThomasWilliamScott/Plasmid_cooperation.git 
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Extended Data Figures 
 

 
Extended Data Figure 1. Protein subcellular localisations. 
Visualisation of all possible subcellular locations predicted by PSORTb. The left panel shows 

a cross-section of a typical Gram-negative bacterium and the right panel shows the equivalent 

for a Gram-positive bacterium. Both kinds of bacteria have an inner membrane, known as the 

cytoplasmic membrane. The main difference is that Gram-positive bacteria are surrounded by 

a thick layer of a molecule called peptidoglycan, while Gram-negative bacteria have a much 

thinner layer of peptidoglycan, and have an additional membrane. Created with 

BioRender.com. 
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Extended Data Figure 2. Substantial variation within and between species in the genomic 

location of extracellular proteins. 

The x-axis is the % of genomes in each species where the proportion of plasmid proteins 

predicted as extracellular is greater than the proportion of chromosome proteins predicted as 

extracellular. Crucially, this considers only whether the plasmid proportion is greater than the 
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chromosome proportion for each genome, rather than also considering the magnitude of the 

difference (Figure 2). Error bars are the 95% Confidence Intervals from a binomial test on each 

species, comparing the number of genomes which have plasmid proportion > chromosome 

proportion to a null prediction of 50% of genomes. Species in blue have >50% of genomes 

where plasmid > chromosome extracellular proportion, meaning extracellular proteins are 

significantly overrepresented on plasmids. Species in red have <50% of genomes where 

plasmid > chromosome extracellular proportion, meaning extracellular proteins are 

significantly overrepresented on chromosomes. Species in grey have a 95% CI which overlaps 

50%, so extracellular proteins are not significantly overrepresented on either plasmids or 

chromosomes in these species. 
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Extended Data Figure 3. Difference in plasmid and chromosome proportion for all 

protein classes predicted by PSORTb. 

The x-axis is the difference in plasmid and chromosome extracellular proportions, as in Figure 

2. The y-axis is all possible subcellular locations predicted by PSORTb. These protein ‘classes’ 

are ordered along the y-axis by location within the cell, from intracellular to increasingly 

extracellular. Each dot is the posterior mean and 95% Credible Intervals from a MCMCglmm  

on the difference in plasmid and chromosome proportion across all species, accounting for 

phylogeny and sample size. The only proteins significantly overrepresented in either direction 

are unknown proteins, which make up a higher proportion of plasmid proteins in all species we 

analysed. 
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Extended Data Figure 4. No effect of plasmid mobility on the difference in plasmid and 

chromosome proportion of genes coding for extracellular proteins.  

The x-axis is the % of a species’ plasmids which are conjugative or mobilizable. The y-axis 

shows the difference in the plasmid and chromosome proportions of genes coding for 

extracellular proteins, as in Figure 2. Each dot is the mean for all genomes in a species. Species 

in blue are those with genes coding for extracellular proteins overrepresented on plasmids, 

while species in red have genes coding for extracellular proteins overrepresented on 

chromosomes. 
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Extended Data Figure 5. No difference in where extracellular proteins are coded for in 

pathogens compared to non-pathogens.   

The y-axis shows the difference in the plasmid and chromosome proportion of genes coding 

for extracellular proteins. Each dot is the mean for all genomes in a species. Species in blue are 

those with genes coding for extracellular proteins overrepresented on plasmids, while species 

in red have genes coding for extracellular proteins overrepresented on chromosomes. Species 

were categorised as pathogens or non-pathogens; those we could not classify as either are 

shown in the ‘Opportunistic + others” category. The black bars indicate the mean for all species 

in each category. 
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Extended Data Figure 6. Additional measures of environmental variability. We used two 

additional methods to estimate the environmental variability encountered by these species. (a) 

The x-axis shows published data on the number of five broad environments each species was 

recorded in, which we supplemented with information from the literature to include all species. 

(b) The x-axis shows the proportion of each species’ genes which are ‘core’ genes, meaning 

they are found in all members of the species. The y-axis in both graphs shows the difference in 

the proportion of genes on plasmids and chromosomes coding for extracellular proteins. Each 

dot is the mean for all genomes in a species. Species in blue are those with extracellular proteins 

overrepresented on plasmids, while species in red are those with extracellular proteins 

overrepresented on chromosomes. For both these measures, we found no significant correlation 

with the genomic location of genes coding for extracellular proteins across species.  
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Chapter 3: Plasmid size, mobility and range 
Abstract 

Many characteristics of bacterial plasmids are highly variable, both within and between 

species. First, the size of plasmids can vary by several orders of magnitude. Second, many 

plasmids are capable of transferring to other cells via a process called conjugation, while others 

are incapable of transferring via this process. Third, some plasmids are unique to a bacterial 

species, while others have been sequenced across multiple bacterial classes. Each of these three 

characteristics could be seen as analogous to the ‘life-history’ traits often studied in animals 

and plants, which describe different aspects of a species’ lifecycle. Understanding whether and 

how life-history traits may correlate with one another can help us understand the evolution of 

these traits. Here, we analysed how the size, mobility and range of 3522 plasmids from 51 

diverse species of bacteria correlate with one another. We found that plasmid mobility is 

positively correlated with plasmid range. Additionally, we found that plasmids of different 

mobilities had different directions of correlation between plasmid range and plasmid size. 

Together, our analyses provide a comprehensive study of plasmid variation, providing a basis 

for future work. 

 

Introduction 
Plasmids are semi-autonomous, usually circular segments of DNA capable of replicating 

independently from their host cell’s chromosome(s) (Stewart & Levin 1977; Levin et al. 1979; 

Dietel et al. 2018). Plasmids are widespread across bacteria and archaea, and have even been 

found inside some eukaryotic cells, such as yeast (Broach et al. 1982; Rodríguez-Beltrán et al. 

2021). In bacteria, plasmids are often defined as carrying only ‘accessory’ genes (Tazzyman 

& Bonhoeffer 2015). These are genes not necessary to survival of the cell, but still may provide 

useful functions. Many plasmids are capable of transferring to neighbouring cells in a process 

called conjugation (Smillie et al. 2010). This is a form of horizontal gene transfer, where genes 

transfer to other individuals within the same generation, rather than vertically via descendants. 

This conjugation process is largely controlled by genes on the plasmids themselves (Smillie et 

al. 2010; Rodríguez-Beltrán et al. 2021).   

 

Not all plasmids are capable of transferring via conjugation, and of those that are, not all have 

complete control of their own transfer. In general, we can group plasmids into three classes 

based on their mobility (Smillie et al. 2010). First, conjugative plasmids carry all the genes 



 58 

necessary for the conjugation process, and can transfer between cells independently. Second, 

mobilizable plasmids are also capable of transferring via conjugation, but cannot do this alone. 

Instead, they code for only a subset of conjugation genes, and so rely on the presence of a 

conjugative plasmid to code for the rest of the process. Third, non-mobilizable plasmids cannot 

transfer via conjugation at all. They lack the crucial oriT gene, which allows a plasmid to be 

pulled through the conjugative tube called the pili. Without this gene, they are incapable of 

being transferred via this process, regardless of the presence of other plasmids. Therefore, these 

differences mean that mobility can vary substantially between plasmids (Smillie et al. 2010). 

 

Plasmids differ not just in mobility, but also in their potential range of bacterial hosts. While 

some plasmids have been sequenced in only a single species of bacteria, others are capable of 

transferring to a variety of other species (Redondo-Salvo et al. 2020). For example, the pPCP1 

plasmid is unique to Yersinia pestis, and carries several genes important for the species’ 

virulence (Rajanna et al. 2010). One the other hand, some IncP plasmids have been sequenced 

in a diverse range of species across the Proteobacteria phyla (Klümper et al. 2015). 

Additionally, some of these can even jump to other phyla, with an analysis of bacteria in a soil 

sample indicating plasmid transfer between Gram-positive Firmicutes and Gram-negative 

Actinobacteria (Klümper et al. 2015).  

 

Plasmids also vary in size by several orders of magnitude (Smillie et al. 2010; Shintani et al. 

2015; Rodríguez-Beltrán et al. 2021) (Figure 1). Some plasmids are so small that they carry 

only the genes necessary for them to replicate. In contrast, other plasmids can be huge, reaching 

up to a third of the length of their hosts’ chromosome. These very large plasmids are often 

called ‘megaplasmids’, though at what size a plasmid becomes a megaplasmid, and a 

megaplasmid becomes a second chromosome, is arbitrary and inconsistent across species. 

Additionally, the term ‘chromid’ has been coined for sequences which appear plasmid in 

origin, but which now function more as a secondary chromosome (Harrison et al. 2010)  

(Figure 1). 

 

Clearly, there are several characteristics of plasmids that can vary substantially. Plasmid 

mobility, range and size each describe a feature of the ‘life history’ of plasmids. These could 

be considered analogous to the life history traits that evolutionary biologists study in animals, 

such as lifespan, offspring size and age at maturity (Stearns 1992). A key question is whether 

and how life history traits correlate with one another (Stearns 1983). Life history traits can be 
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positively correlated if natural selection selects for a high value of one trait while indirectly 

selecting for a high value of another trait. Alternatively, life history traits can be negatively 

correlated if there is a trade-off between an organism’s ability to maximise both (Stearns 1989). 

Consequently, we may also expect that the mobility, range and size of plasmids could be 

correlated.  

 

Understanding the presence and direction of these correlations can give insights into how 

selection may be acting on different life history traits (Stearns 2000). Therefore, exploring 

correlations between different characteristics of plasmids could also be useful for 

understanding plasmid evolution. Some studies have examined how plasmid size varies with 

respect to plasmid mobility, and others have explored how the range of potential hosts varies 

across plasmids (Smillie et al. 2010; Shintani et al. 2015; Rodríguez-Beltrán et al. 2021). 

However, how these three ‘life-history’ traits correlate with one another has not been explored 

together and in detail, especially across a wide diversity of plasmid sequences.   

 

Here, we used a dataset of 3522 plasmid sequences from 51 diverse bacterial species to test 

how plasmid size, plasmid mobility and plasmid range vary with respect to each other. We also 

considered three other characteristics which may be expected to correlate with one or more 

these traits: the number of protein coding genes, the number of genes coding for extracellular 

proteins and the lifestyle of the plasmids’ host species. Together, these analyses provide an 

initial step into how different characteristics of plasmids are correlated with one another, 

potentially providing insights into how selection acts on these candidate life-history traits of 

plasmids. 
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Figure 1. Plasmids, megaplasmids, chromids and chromosomes. 

Illustration of the range of sizes for different genomic elements in bacteria. 

All numbers refer to the number of base pairs. Units are kilobases (kb), 

meaning 1 kb is 1000 bases. Plasmids range from 1 to 1300 kb, and includes 

‘megaplasmids’ which are >200kb. ‘Chromids’ are between 300 and 3600 

kb, and function as secondary chromosomes. Bacterial chromosomes range 

from 1000 to 6000 kb. Made using Biorender.com.  
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In addition to providing a mobility prediction, MOB-suite also provided information on how 

widely a plasmid is distributed, which we will refer to as plasmid range. Plasmid range is a 

measure of the breadth of the different bacterial hosts a plasmid is carried in. Specifically, it is 

defined as the highest taxonomic rank of the genomes in which a plasmid (or plasmids very 

similar to it) is found. For example, a plasmid found only in genomes of Yersina sp. would 

have a plasmid range of ‘genus’, while a plasmid found in a number of Gammaproteobacteria 

species would have a plasmid range of ‘class’. In general, the higher the taxonomic rank of 

genomes carrying the plasmid, the larger the plasmid’s range. Each plasmid was assigned one 

of seven plasmid ranges: species, genus, family, order, class, phylum and domain.  

 

Statistical analysis 
In this chapter, we have analysed the data using two approaches: (i) considering each plasmid 

as an independent data point; (ii) controlling for both the phylogeny of the plasmids’ host 

species and the number of plasmids per species. Which of these approaches is more appropriate 

can depend on the question being asked.  

 

In Chapter 2, when we examined whether more mobile plasmids carried proportionally more 

genes coding for extracellular proteins than less mobile plasmids, we analysed whether this 

pattern was consistent across bacterial species. Therefore, we first calculated the correlation 

within species before comparing these across species, and then controlled for the phylogenetic 

non-independence between species using a phylogeny. This approach ensured that any results 

were not biased by an artificially larger number of similar plasmids from a few species. 

 

However, rather than use plasmids as replicates to understand patterns across bacterial species, 

here we are considering patterns across plasmids themselves. We do not have a phylogeny for 

plasmids, and they are unlikely have a common single origin. Consequently, we are unable to 

control for shared plasmid history, although we would like to. Bacterial phylogeny does not 

necessarily reflect plasmid evolutionary history, especially as many plasmids in the dataset 

may exist in species other than that of the genome they were sequenced in here. Therefore, our 

alternative approach is to consider plasmids as individual data points, with the option of further 

controlling for species phylogeny and sample size as random effects in the model.  
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However, considering each of the 3522 plasmids as an individual data point could cause 

misleading significant results. Our results in Chapter 2 showed how an analysis using 

individual plasmids as data points could produce statistically significant differences, despite 

the fixed effect of the model only explaining 1.5% of the variance in the response variable. 

This suggests the importance of examining effect sizes as well as p-values, particularly when 

analysing very large datasets. 

 

For the analyses in this chapter, we have used a mix of these approaches. We have considered 

plasmids as independent data points, both with and without controlling for their host species’ 

phylogeny and plasmid range. We have also reported and discussed the effect sizes of our 

statistical models to better explore the biological importance of any significant results. For 

consistency, we have used the R2 value to report the effect size, which is generally defined as 

the proportion of variance in the dependent variable explained by the independent variable. As 

a proportion, it is bound between 0 and 1, though it is often expressed as a percentage. As 

discussed in Chapter 2, a minimum of 5-10% of variance explained is reasonable for many 

areas of evolutionary biology (Cohen 1988; Jennions & Møller 2003; Crawley 2014). 

 

Results  
Plasmid size and protein coding genes 

To better understand different aspects of plasmid size, we first examined how plasmid sequence 

length correlated with the number of protein coding genes. In bacterial genomes, there is very 

little redundancy in the genome, with the vast majority of base pairs making up part of a gene. 

This is in contrast to eukaryotic genomes, which frequently have large stretches of DNA 

between genes (Bobay & Ochman 2017). This means that the size of a plasmid, in terms of the 

number of base pairs in its sequence, is usually highly correlated with the number of genes the 

plasmid carries.  

 

This is the case for my dataset, where the number of base pairs was highly correlated with the 

number of protein coding genes (Figure 2) (ANOVA: estimate=3.23x106, t=331.61, p<0.001, 

R2=0.969; MCMCglmm: posterior mean=0.001, pMCMC<0.001; R2=0.962). For the rest of 

this Chapter, I will use the number of base pairs as a measure of plasmid size. 
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Figure 2. Correlation between two measures of plasmid size. 

Each plasmid is represented as a blue circle. The x-axis indicates the number 

of base pairs making up the plasmid sequence, and the y-axis indicates the 

number of protein coding genes on the plasmid. The two measures are highly 

correlated. 

 
Correlation between plasmid mobility and plasmid range  

Next, we tested the extent to which plasmid mobility and plasmid range were correlated. 

Although we may expect this to be the case in general, the two measures are different in what 

they are estimating, and so may not be perfectly correlated. While plasmid mobility is a proxy 

for whether, and if so how frequently, a plasmid can be transferred via conjugation, the range 

of a plasmid indicates how far it has actually spread across different bacteria species.  

 

An example of when these two measures may differ is if a non-mobilizable plasmid had been 

present in the ancestor of a large number of bacterial species, and many of these species 

retained the plasmid. Similarly, a conjugative plasmid could have transferred rapidly within a 

species, but never end up in other species, either due to the lifestyle of the species or systems 

like restriction modification preventing its uptake. Finally, there is the possibility that some 

plasmids predicted as non-mobilizable are capable of transferring to other cells by mechanisms 

other than conjugation.  
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However, despite these caveats, plasmid mobility and plasmid range were positively correlated 

(Figure 3) (Chi Sq; c2 = 538, df=12, p <0.001). Additionally, when comparing the range of the 

mobility categories to one another, conjugative plasmids have a broader range than non-

mobilizable plasmids (T-test; Conjugative = 3.42, Non-mobilizable = 2.63, t=12.75, df = 2255, 

p<0.001, R2=0.067), and mobilizable plasmids also have a broader range than non-mobilizable 

plasmids (T-test; Mobilizable = 3.58, Non-mobilizable = 2.63, t=13.8, df = 2350, p<0.001, 

R2=0.076). In contrast, there was no real difference between the range of conjugative and 

mobilizable plasmids, since less than 0.3% of the variance in host-range was explained by 

whether a plasmid was conjugative or mobilizable (T-test; Conjugative = 3.42, Mobilizable = 

3.58, t=-2.44, df=2254, p=0.015, R2=0.0026). Together, these results suggest that the ability to 

conjugate, even if only occasionally in the case of mobilizable plasmids, increases the range of 

genomes in which a plasmid is found.  

 

 

Figure 3. Plasmid range and plasmid mobility. 

The range of plasmids increases along the x-axis, and the panels indicate the 

three types of plasmid mobility. The bars indicate the number of plasmids in 
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each plasmid range and mobility combination. Overall, plasmid range is 

broader with increasing mobility of plasmids.  

 

How does plasmid size vary with respect to plasmid mobility and plasmid 

range? 

Figure 4 shows the distribution of plasmid size across all 3522 plasmids in our dataset. At just 

1506 base pairs, a non-mobilizable Escherichia coli was the smallest plasmid. In contrast, a 

conjugative Pseudomonas aeruginosa plasmid was the largest, at 398,807 base pairs. The mean 

plasmid size, indicated by a dashed vertical line in Figure 4, was 73,407 base pairs.  

 

 

Figure 4. Frequency distribution of plasmid size. 

The x-axis is the number of base pairs in each plasmid sequence, split into 

groups which increase by 5000 base pairs along the axis. The y-axis is the 

number of plasmids which are in each of these groups. The dotted line is the 

mean number of base pairs across all plasmids in the dataset. 

 

We then examined how plasmid size varied with plasmid mobility (Figure 5). The mobility of 
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mobilizable plasmids (ANOVA on three groups, R2=0.164; Conj. compared to non-mob.: 

estimate=43150, t=14.97, p<0.001; Mobilizable compared to non-mobilizable: estimate=-

32465, t=-11.52, p<0.001). We found the same results when controlling for species’ phylogeny 

and number of plasmids per species (MCMCglmm on three groups, R2=0.078; Conj. compared 

to non-mob: posterior mean = 45990, 95% CI=40125 to 51241, pMCMC<0.001; Mob. 

compared to non-mob.: posterior mean = -20458, 95% CI = -25434 to -15240, 

pMCMC<0.001).  
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Figure 5. Plasmid size and plasmid mobility 

We categorised plasmids into one of three categories of mobility: non-

mobilizable, mobilizable and conjugative, with a panel for each. The x-axis 

is the number of base pairs in each plasmid sequence, split into groups which 

increase by 5000 base pairs along the axis. The y-axis is the number of 

plasmids in our dataset which are in each of these groups. The dotted line is 

the mean number of base pairs across all plasmids for each category of 

mobility.  
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Next, we examined how plasmid size correlated with plasmid range (Figures 6 & 7). When 

analysing all plasmids, regardless of mobility, and considering plasmid range as a continuous 

variable, there was no correlation between plasmid range and plasmid size (Figure 6) 

(ANOVA: slope estimate=-527, t=-0.69, p=0.49, R2=<0.001; MCMCglmm: posterior mean = 

-1282, 95% CI=-2879 to 312, pMCMC=0.136, R2<0.001).  

 

Next, to explore the correlation between plasmid size and range with respect to mobility, we 

analysed the three mobility categories separately (Figure 7). For non-mobilizable plasmids 

only, there was no correlation between plasmid size and plasmid range (Figure 7) (ANOVA: 

slope estimate=-493, t=-0.33, p=0.74; MCMCglmm: posterior mean=5191, 95% CI= 1952 to 

8122, pMCMC=0.002, R2 <0.01). However, for both mobilizable and conjugative plasmids, 

there was a significant correlation between plasmid size and plasmid range (Figure 7). The 

correlation was negative for mobilizable plasmids and positive for conjugative plasmids; 

however, the effect sizes of these correlations were quite small, and were further reduced once 

we controlled for host species bacterial phylogeny (ANOVAs; Mobilizable: slope estimate=-

6166, t=-9.28, p<0.001, R2=0.065; Conjugative: slope estimate=12848, t=7.89, p<0.001, 

R2=0.052) (MCMCglmm; Mobilizable: posterior mean=-5469, 95% CI=-7043 to -4133, 

pMCMC<0.001, R2=0.029; Conjugative: posterior mean=14207, 95% CI = 10444 to 18184, 

pMCMC<0.001, R2=0.030).  

 

 



 69 

 

Figure 6. Plasmid range and plasmid size. 

Each plasmid is represented by a circle. Plasmids are split into one of seven 

taxonomic ranges, which is increasingly broad along the x-axis. The y-axis 

is the number of bases in each plasmid sequence. Overall, there was no 

correlation between plasmid size and plasmid range. 
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Figure 7. Plasmid range, mobility and size.  

Each plasmid is represented by a circle. Data is shown as in Figure 5, but 

with plasmids additionally categorised into one of three mobility categories, 

with one panel for each. Mobilizable plasmids were smaller with increasing 

range, while conjugative plasmids were larger with increasing range.  
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Therefore, in this Chapter, we instead examined whether these species differed in the size of 

their plasmids. 

 

When controlling for host species phylogeny and number of plasmids per species, we found no 

difference in the size of species’ plasmids between the three pathogenicity and host-range 

groups (Figure 8) (MCMCglmm of three groups, R2=0.038; Narrow host-range compared to 

broad host-range pathogens: posterior mean=-24126, 95% CI=-76485 to 31509, 

pMCMC=0.368; Non-pathogens compared to broad host-range pathogens: posterior mean=-

46698, 95% CI=-96408 to 8181, pMCMC = 0.09).  

 

 
Figure 8. Plasmid size and species’ pathogenicity and host-range. 

Each plasmid is represented by a circle. The x-axis indicates the number of 

base pairs in the sequence of each plasmid. Plasmids are grouped into the 

species they were sequenced in, labelled on the y-axis. Boxplots indicate the 
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distribution of plasmid sizes for each species. Circles and boxplots are 

coloured by the pathogenicity and host-range of the species. Only species we 

could be sure were either pathogens or non-pathogens are shown. Pathogens 

are further split into broad or narrow host-range species.  

 
Plasmid size and genes coding for extracellular proteins 

We also examined whether there was a correlation between plasmid size and the proportion of 

plasmid genes coding for extracellular proteins. We found no significant correlation between 

plasmid size and the proportion of plasmid genes that coded for extracellular proteins 

(ANOVA: slope estimate = 1.9x10-8, t=1.56, p=0.12; MCMCglmm: R2<0.01) (Figure 9). 

While some very small plasmids do appear to have particularly high proportions of 

extracellular proteins in Figure 9, this is likely an artefact of calculating proportions of a very 

small total, rather than an actual effect.  

 

Figure 9. Plasmid size and extracellular proteins. 

Each plasmid is represented as a circle. The x-axis is the number of base pairs 

in each plasmid sequence. The y-axis is the proportion of genes which code 

for extracellular proteins of each plasmid. Overall, there is no correlation. 
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Discussion 
We found a number of correlations between the different characteristics of plasmids we 

examined. First, we found that plasmid mobility and plasmid range were positively correlated, 

suggesting that the ability to conjugate does increase a plasmids’ potential range of bacterial 

hosts. Second, we also found that plasmids within each of the three classes of mobility differed 

significantly in both their size and range. While we found no significant correlation between 

the size and host-range across all plasmids, we did find that the size of mobilizable plasmids 

was negatively correlated with range, while the size of conjugative plasmids was positively 

correlated with range. However, we also found a number of characteristics that were not 

correlated with one another. Specifically, we found no correlation between the size of plasmids 

and either the lifestyle of their host species or the proportion of their genes coding for 

extracellular proteins. Overall, our results suggest that selection may act differently on the size 

and range of plasmids from the three mobility classes. 

 

For conjugative plasmids, the positive correlation of plasmid size with plasmid range could be 

driven by two potential factors (Figure 7). First, conjugative plasmids with a broader range 

may be under stronger selection to carry multiple genes, in order to provide benefits to multiple 

potential hosts. Second, selection on these plasmids to lose genes, so as to reduce their cost to 

hosts, could be weaker. This is because their fitness will be less dependent on the fitness of 

their host cell, and more dependent on ability to transfer horizontally. Whether this positive 

correlation between plasmid size and plasmid range is due to stronger selection for gene gain, 

or weaker selection for gene loss, will require further analysis.  

 

While both conjugative and mobilizable plasmids are capable of transferring, our results 

suggest that plasmid size is likely to be under different selection pressures between the two. 

We found that mobilizable plasmids were generally much smaller than conjugative plasmids 

(Figure 5). One explanation for this is simply that they do not carry genes for conjugation. 

However, we found that the plasmid size of mobilizable plasmids was correlated with plasmid 

range, but in the opposite direction to conjugative plasmids (Figure 7). This suggests that rather 

than simply not carrying conjugation genes, mobilizable plasmids could be under different 

selection pressures related to their size.  
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Mobilizable plasmids have been described as ‘hijacking’ the machinery of conjugative 

plasmids (Gérard Guédon et al. 2017). This description suggests that they may act as largely 

selfish mobile elements, potentially spreading between cells at the expense of conjugative 

plasmids, and providing little benefits to the host. In this case, we may expect that mobilizable 

plasmids with the broadest range may be under the strongest selection to lose any genes that 

are not required for transfer, and so these would be the most ‘parasitic’ of the mobilizable 

plasmids. In contrast, those which only spread between a narrow range of hosts could be under 

weaker selection to lose genes. This is because vertical inheritance may be a more important 

aspect of their fitness, and so carrying some genes which are beneficial to the host could make 

them more likely to be maintained. Overall, this suggests that conjugative and mobilizable 

plasmids of a similar range may have different selection pressures acting upon their size.  

 

For non-mobilizable plasmids, the lack of correlation between plasmid size and plasmid range 

is perhaps unsurprising (Figure 7). This is because a non-mobilizable plasmid with a broad 

range is still unable to transfer, and so here plasmid range is not a measure of potential mobility 

for these plasmids. What it means for a non-mobilizable plasmid to have a narrow versus a 

broad range is unclear. Figure 3 shows that the majority of non-mobilizable plasmids have a 

comparatively narrow range. Those with a broader range could be due to a distant species 

acquiring the plasmid through another mechanism of horizontal gene transfer. Alternatively, 

those plasmids could have been maintained in an entire bacterial lineage. Regardless, the lack 

of correlation suggests that selection on the size of non-mobilizable plasmids is unrelated to 

the potential for plasmids to transfer.  

 

Limited evidence for a correlation of species lifestyle with plasmid size 

We found relatively little evidence that a species’ lifestyle correlated with the size of their 

plasmids. Specifically, we found that whether a species was pathogenic, and the host-range of 

the species, did not correlate with the size of their plasmids (Figure 8). This suggests that the 

environmental variability of species has little effect on relative selection for gene gain and loss 

in plasmids, at least within pathogens. However, in Figure 8, the three species with the largest 

plasmids all live inside the root nodules of plants. In contrast, the five species with the smallest 

plasmids all live inside the cells of other organisms, with some acting as pathogens and others 

as symbionts. Therefore, while plasmid size does not correlate with pathogenicity or pathogen 

host-range, this may suggest that other aspects of a species’ lifestyle may exert similar 

pressures on the size of plasmids. This will require further analysis. 
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How could copy number affect selection on plasmid size? 

An additional feature of plasmids, which we have so far not considered here, is that plasmids 

can exist in multiple copies per cell (San Millan et al. 2017; Rodríguez-Beltrán et al. 2020). 

This could be important for selection on plasmid size, because smaller plasmids have been 

shown to generally exist in higher numbers of copies (Zhong et al. 2011). High copy number 

could be beneficial to hosts, since it could allow high expression of the useful genes carried on 

plasmids. Therefore, plasmids could be under selection to reduce their size to increase their 

copy number. On the other hand, multiple copies of plasmids require more resources for 

plasmid replication and translation, suggesting that selection on the copy number of plasmids 

could further complicate the direction of potential selection on plasmid size. 

 

Conclusions 

Overall, our analyses provide an initial step in understanding how different candidate ‘life-

history’ traits of plasmids correlate with one another. We found that plasmid mobility and 

plasmid range are positively correlated, suggesting that the ability to conjugate increases a 

plasmid’s potential range of hosts. While we found no correlation between plasmid range and 

plasmid size across all plasmids, we did find that the size of conjugative plasmids was 

positively correlated with range, while the size of mobilizable plasmids was negatively 

correlated with plasmid range. Although the effect sizes of these correlations are small, they 

potentially suggest that the size of conjugative and mobilizable plasmids may be under 

different selection pressures depending on how aligned their fitness is with their host.  To 

further explore these potential correlations, empirical analyses would be particularly helpful. 

For example, altering the size of plasmids experimentally could test explicitly how variation 

affects plasmid mobility and plasmid maintenance. 
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Chapter 4. Why do plasmids have an AT-bias? 
Abstract 

Plasmids are found in genomes across the bacterial tree of life. They are semi-autonomous 

segments of DNA, many of which are capable of transferring between different bacterial hosts. 

Plasmid sequences appear to have a high percentage of nucleotide bases which are A and T, 

relative to bacterial chromosomes. However, the reason for this AT-bias is unclear. A and T 

nucleotides are less costly to produce and present in higher quantities in bacterial cells than G 

and C bases. Therefore, AT-bias in plasmids could be an adaptation to reduce their cost. 

Alternatively, plasmid AT-bias could instead be a product of increased genetic drift and weaker 

purifying selection in plasmids leading to the accumulation of mutations, which are biased 

towards A and T bases, in plasmid sequences. Here, we used a dataset of 3522 plasmids to test 

key predictions arising from these two hypotheses. Overall, we found little support for the 

adaptation hypothesis, and comparatively better support for the hypothesis that increased 

genetic drift and weaker purifying selection in plasmids drives their consistent AT-bias via the 

accumulation of AT-biased mutations. Future work could look at other intracellular elements 

that display AT-bias, such as endosymbionts, to see if similar patterns are found. Additionally, 

we suggest that examining signatures of selection and/or drift in plasmid sequences could 

provide more insights than the correlational analyses presented here. 

 

Introduction 
Found in almost every bacterial species that has been sequenced, plasmids are circular 

segments of DNA which appear to play an important role in bacterial evolution. Although they 

carry genes which are usually considered as ‘accessory’ to their host’s chromosome, many 

bacteria rely on plasmids for key parts of their lifestyle. Examples include the virulence 

plasmids identified in a diverse range of pathogens, and the pSym plasmids that carry genes 

for nodulation in Rhizobia species (Hale 1991; Cornelis et al. 1998; Ding & Hynes 2009). 

Additionally, many plasmids can transfer between cells in process known as conjugation, 

which is a form of horizontal gene transfer. Such plasmids either code for all the genes 

necessary for conjugation, and are referred to as conjugative plasmids, or carry only a subset 

of genes, and are referred to as mobilizable plasmids. Other plasmids cannot be transferred at 

all via this process, and are known as non-mobilizable plasmids.  
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Plasmid sequences have been observed to be particularly enriched with A and T bases, 

compared to G and C bases (Nishida 2012; Dietel et al. 2018). The relative proportion of AT 

bases compared to GC bases, often referred to as base content, is usually very stable across 

genomes of the same bacterial species, and across genes within a bacterial genome. While the 

apparent AT-bias of plasmid sequences has been widely observed and discussed, the reason 

for this is still unclear (Nishida 2012; Bohlin et al. 2017; Dietel et al. 2018, 2019). Here, we 

consider two major hypotheses for why plasmids appear to be consistently enriched with AT 

bases compared to their bacterial host’s chromosome. 

 

First, AT-bias in plasmids could be an adaptation to be less costly to their bacterial hosts 

(Figure 1). AT bases are generally less costly to produce than GC bases, and also present at 

higher concentrations inside cells (Dietel et al. 2019). Recently, an experimental study showed 

that plasmids which had a higher AT-content than their hosts’ chromosome were less costly 

than those with similar or lower AT-content (Dietel et al. 2019). If plasmids are too costly 

relative to their benefit, hosts would be under selection to lose such plasmids. Therefore, 

increased AT-content of plasmids could reduce the cost of plasmids, allowing them to be 

maintained in the long-term. An analogous hypothesis has also been suggested for why many 

bacterial endosymbionts have AT-rich genomes, compared to their eukaryotic hosts (Rocha & 

Danchin 2002; Dietel et al. 2018). 

 

Second, AT-bias could instead be the product of increased genetic drift, weaker purifying 

selection and higher rates of mutation in plasmids (Figure 1). Across bacteria, mutations are 

more likely to result in AT sites compared to GC sites (Hershberg & Petrov 2010; Hildebrand 

et al. 2010). This appears to be the case even in bacterial species with a low baseline AT-

content. If mutation is higher in plasmids, and such mutations have a higher fixation rate, this 

could lead to plasmids having a higher AT-content relative to bacterial chromosomes. 

 

There are several reasons why plasmids could have a higher mutation rate compared to 

chromosomes. Plasmids frequently exist in multiple copies per cell, which has been suggested 

to generate more opportunities for mutation compared to single copy plasmids (Rodríguez-

Beltrán et al. 2020, 2021). Additionally, due to the potential for plasmid loss, many plasmids 

exist in only a subset of cells at any one time, potentially reducing their population size relative 

to their hosts. This could mean a weaker effect of purifying selection in plasmids of nearly-

neutral deleterious mutations, and together with genetic drift lead to the accumulation of 
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mutations in plasmids (Rodríguez-Beltrán et al. 2021). Therefore, if mutations occur and are 

fixed at a higher rate in plasmids compared to chromosomes, this could explain the AT-bias of 

plasmids.  

 

Figure 1. Two hypotheses for AT-bias in plasmids. 

Segments of plasmid DNA sequences are illustrated, with AT shown in 

green/blue, and GC shown in purple/red. Mutation hypothesis: plasmid 

sequences become enriched with AT because genetic drift and weaker 

purifying selection leads to more mutations being fixed, which are AT-

biased. Adaptation hypothesis: plasmids with a high AT-content are less 

costly to their hosts than low AT-content plasmids, meaning they will spread 

more throughout the population, and over time plasmids will become 

increasingly AT-biased. Created using Biorender.com. 

 

These two hypotheses give different predictions for how AT-content would be expected to vary 

with respect to plasmid transferability. Plasmid mobility and range capture two different 

aspects of plasmid transferability: their ability to transfer via conjugation and the range of 

bacterial species they are found in, respectively. As expected, in Chapter 3 we found that 

plasmid mobility and range were positively correlated. In this Chapter, we will use plasmid 

mobility and range as two different ways to estimate plasmid transferability. 

 

Plasmids with a lower mobility and narrower range are unlikely to spread much to other cells, 

in comparison with broad range conjugative plasmids. These low mobility and narrow-range 
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plasmids will therefore be more reliant on the fitness of their bacterial host for their own fitness, 

because their only way of getting into the next generation is vertical inheritance via their hosts’ 

daughter cell. 

 

Therefore, if AT-bias was an adaptation of plasmids to reduce their cost to their bacterial host, 

we would expect plasmids with lower transferability to be those under strongest selection to 

increase their AT-content. 

Consequently, we can predict that: 

(1) Plasmid AT-content should be negatively correlated with plasmid mobility. 

- The fitness of lower mobility plasmids is more aligned with their host, increasing 

selection to reduce their cost by increasing their AT-content.  

(2) Plasmid AT-content should be negatively correlated with the range of hosts that carry 

the plasmid. 

- The fitness of narrower range plasmids is more aligned with their host, increasing 

selection to reduce their cost by increasing their AT-content.  

 

In contrast, if AT-bias is instead due to mutations accumulating in plasmid sequences, this 

would be the case for all plasmids, regardless of their transferability. This would mean the 

effects of mutation, genetic drift and weaker purifying selection on the AT-content of plasmids 

would be similar, regardless of transferability.  

Consequently, we can predict that:  

(1) Plasmid AT-content should be uncorrelated with plasmid mobility. 

- Plasmids with different mobilities accumulate mutations at a similar rate. 

(2) Plasmid AT-content should be uncorrelated with the range of hosts that carry the 

plasmid. 

- Plasmids with different ranges accumulate mutations at a similar rate. 

 

To test the different predictions of these two hypotheses, we used a dataset of 3522 plasmids 

from 51 diverse bacterial species. We examined how both the AT-content of plasmids, and the 

AT-content of plasmids compared to their species’ chromosomal AT-content, varied with 

respect to plasmid mobility and plasmid range.  
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Method 
We used the dataset of chromosomes and plasmids from 51 species from Chapters 2 and 3. 

Specifically, we used the 3522 plasmid sequences for which we were able to obtain mobility 

and plasmid range predictions using MOB-suite (Robertson & Nash 2018). 

 
AT-content of chromosomes 
To control for variation in plasmid AT-content arising from variation in their host species’ AT-

content, we also compared plasmid AT-content to the baseline AT-content of their species. The 

AT-content is very similar across chromosomes of the same species, usually with a range of 

less than half a percent. Therefore, we collected the AT content of the chromosome(s) of each 

species’ representative genome listed on NCBI. For the analyses in this chapter, we have 

compared plasmids from each species to this value.  

 
Statistical Analysis 
In Chapters 2 and 3, we discussed whether genomes and species can be considered as 

independent from one another. We concluded that because of shared ancestry, phylogenetic 

history of species needs to be controlled for in statistical analyses – as is common in 

evolutionary analyses. 

 

However, when considering analyses using individual plasmids as data points, how to control 

for phylogenetic history becomes more difficult. This is because plasmids are themselves 

independent entities, and may have a different evolutionary history from their host cell. In 

Chapter 3, we analysed plasmid data in two different ways, either by considering plasmids as 

independent, or by controlling for the phylogeny and number of plasmids of the species each 

plasmid was sequenced in. We also discussed the importance of considering effect sizes, not 

just significance values, especially when analysing very large datasets.  

 

In this Chapter, we will use the same two approaches as the previous chapter, noting any 

analyses in which the results are different, and discussing the potential reasons for this. The 

analyses on plasmids in this Chapter have an additional confounding variable, which is the 

baseline AT-content of the species they were sequenced in. Therefore, when testing for patterns 

of AT-content across plasmid mobility and/or range, we have analysed both the AT-content of 
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plasmids themselves, and also compared to the AT-content of the species’ representative 

chromosome.  

 

Results 
Are plasmids AT-rich compared to their chromosomes? 
To check that the plasmids in our dataset were indeed enriched with A and T bases, we first 

examined the extent to which plasmids in our dataset exhibited AT-bias. Figure 2 shows the 

distribution of the AT-content of each species’ representative chromosome and all plasmids in 

our dataset. Overall, there was considerable variation in the AT-content of species’ 

chromosomes. Ralstonia solanacearum had the lowest AT-content with 33.3%, while 

Buchnera aphidicola had the highest AT-content with 74.7%. There was similarly large 

variation in the AT-content of plasmids. The plasmid with the lowest AT-content in our dataset 

was a non-mobilizable plasmid sequenced in a Xanthomonas citri genome, with an AT-content 

of 31.4%, while a non-mobilizable Buchnera aphidicola plasmid had the highest AT-content 

at 76.3%. 

 

Figure 2. AT-content distribution of plasmids and chromosomes. 

Density plots of the distribution of the percentage of bases that are A or T for 

plasmid sequences (blue) and chromosomes (red). The greater the density, 
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the more plasmids or chromosomes there are with that value of % AT. In this 

way a density plot is effectively a smoothed histogram. The dotted lines 

indicate the mean of each distribution. Overall, the mean of the % of AT 

bases is higher on plasmids than chromosomes, though there is much 

variation. 

 

The mean plasmid percentage of A or T bases was on average 3.0% higher than the 

representative chromosomes (Unpaired t-test; mean plasmid % AT = 56.9, mean chromosome 

% AT = 53.9, t=12.7, df=6972, p<0.01, R2=0.023). However, we also need to compare 

plasmids to the AT-content of the species they were sequenced in. This is required because, 

when considering plasmids as independent, 88% of the variance in plasmid AT-content was 

explained by the AT-content of their species’ chromosome (ANOVA; slope estimate = 0.92, 

t=159.9, p<0.01, R2=0.88) Similarly, when controlling for species phylogeny, the AT-content 

of their species’ chromosome explained 74.6% of the variation in plasmid AT-content 

(MCMCglmm: posterior mean=0.780, 95% CI=0.706 to 0.855, pMCMC<0.001, R2=0.746). 

Therefore, when testing the predictions of the two hypotheses, we needed to consider if 

plasmids had a higher AT-content than the chromosome, in addition to whether plasmids have 

a high AT-content in general.  

 

Figure 3 shows the AT-content of every plasmid in each species and the AT-content of the 

representative chromosome for each species. Plasmids (blue circles) had consistently higher 

AT-content than their species’ chromosomes (red dots). This result holds irrespective of 

whether we analysed with (a): a paired t-test of the species’ chromosome AT-content compared 

to each plasmid’s AT-content (Paired T-test; mean difference = 2.99, 95% CI = 2.88 to 3.11, 

t=51.23, df=3487, p<0.001, R2=0.428); or (b) the difference in % AT-content of every plasmid 

compared to its species’ representative chromosome, when controlling for host species’ 

phylogeny and number of plasmids per species (Figure 4; MCMCglmm: posterior mean=2.76, 

95% CI=1.826 to 3.614, pMCMC=0.002). Overall, plasmids displayed consistent AT-bias 

relative to their species’ chromosomes, as has been observed and discussed previously (Nishida 

2012; Dietel et al. 2018, 2019).  
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Figure 3. Plasmid AT-compared to their species’ chromosome.  

The y-axis shows all 51 species, and the x-axis is the % of bases that are A 

or T. Red dots are the % AT of each species’ representative chromosome. 

Blue circles are individual plasmids. Very few plasmids are to the left of their 

species’ red dot, indicating that plasmids consistently have a higher AT-

content than the chromosome. This is true both for species with very low and 

very high chromosomal AT-content.  
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Figure 4. Difference in % AT of plasmids compared to chromosomes. 

The y-axis shows all 51 species, and the x-axis is the difference in the 

percentage of bases that are A or T for each plasmid compared to its species’ 

representative chromosome. For example, a plasmid with an AT-content of 

50% from a species with a chromosome of 40% would have a value of 10 on 
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this graph. Each blue circle is a plasmid, and the dark blue dot is the mean 

difference for each species. Almost all species have a mean difference of 

above 0, meaning their plasmids have a higher AT-content than their 

chromosome.  

 

How does plasmid AT-content vary with plasmid mobility and plasmid 

range? 
To test the predictions of the two hypotheses for why this plasmid AT-bias is such a consistent 

feature of plasmids, we examined how plasmid AT-content varied with respect to plasmid 

mobility and plasmid range. 

 

First, to test the prediction of the adaptation hypothesis that more mobile plasmids should have 

a lower AT-content, we examined how AT-content varied across the three classes of plasmid 

mobility: non-mobilizable, mobilizable and conjugative plasmids (Figure 5). When we 

considered plasmids as independent from one another, plasmid mobility explained 

approximately 5.5% of the variance in the percentage of bases that were A or T across plasmids 

(ANOVA with three groups; F=103.2, df=3485, p<0.001, R2=0.055). However, when 

controlling for host species’ phylogeny and number of plasmids per species, plasmid mobility 

explained less than 0.01% of plasmid AT-content (MCMCglmm with three groups, R2<0.01; 

mob compared to non-mob: posterior mean= 0.024, pMCMC=0.856; conj compared to non-

mob: posterior mean=0.065, pMCMC=0.610).  

 

We found a significant but weak negative correlation between AT-content and plasmid 

mobility, when we considered plasmids as independent, consistent with the prediction of the 

adaptation hypothesis (ANOVA; slope estimate=-1.77, t=-8.78, p<0.001, R2=0.021). However, 

when we controlled for host species phylogeny and plasmid number, this significant correlation 

disappeared (MCMCglmm; posterior mean = 0.033, 95% CI = -0.10 to 0.16, pMCMC=0.622, 

R2<0.001). 
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Figure 5. AT-content and plasmid mobility. 

Plasmids, each shown as a blue circle, are categorised into one of three 

mobility classes: non-mobilizable, mobilizable and conjugative. The relative 

mobility of these classes increases along the x-axis. The y-axis shows the 

percentage of bases that are A or T. Overall, there is no difference between 

the three mobility classes. 

 

To further test this prediction, while controlling for the species’ baseline AT-contents, we also 

examined the effect of plasmid mobility on the difference in AT-content of plasmids compared 

to their species’ chromosome (Figure 6). We found that plasmid mobility explained virtually 

none of the variance in the difference between plasmid and chromosome AT-content, at less 

than 0.1% (ANOVA: R2 <0.01; MCMCglmm: R2 <0.01). 
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Figure 6. Difference in plasmid and chromosome AT-content and 

plasmid mobility 

Plasmids, each shown as a blue circle, are categorised into one of three 

mobility classes: non-mobilizable, mobilizable and conjugative. The relative 

mobility of these classes increases along the x-axis. The y-axis shows the 

difference in the percentage of bases that are A or T for plasmids compared 

to their species’ representative chromosome. Overall, there is no difference 

between the three mobility classes. 

 

Next, to test the second prediction of the adaptation hypothesis, we examined whether plasmid 

AT-content was negatively correlated with plasmid range. If plasmid AT-bias is an adaptation 

to be less costly, plasmids with a lower transferability would be predicted to be those with the 

highest AT-content, because their fitness would be more aligned with the fitness of their host. 

Therefore, they would be under the strongest selection to reduce their cost to the host, to 

maximise their success via vertical inheritance. In addition to plasmid mobility, we used 

plasmid range as a way of estimating plasmid transferability. 

 

Consistent with this prediction, when considering plasmids as independent data points, we 

found a significant negative correlation between plasmid range and the percentage of bases 
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which were A or T (Figure 7) (ANOVA; slope estimate = -1.74, t=-18.13, p<0.001; R2=0.086). 

However, plasmid range only explained 8.6% of variation in plasmid AT-content, and this fell 

to less than 0.1% when we controlled for host species’ phylogeny and number of plasmids per 

species (MCMCglmm; posterior mean = -0.06, 95% CI=0.007 to -0.142, pMCMC=0.106, 

R2<0.001). The negative correlation between AT-content and plasmid range was also no longer 

significant (MCMCglmm; posterior mean=-0.061, 95%CI = -0.14 to 0.007, pMCMC=0.106, 

R2<0.001).  

 

Figure 7. AT -ontent and plasmid range. 

Plasmids, each shown as a blue circle, are categorised into one of seven 

plasmid ranges, depending on the taxonomic rank of the common ancestor 

of all genomes which contain a copy of that plasmid. The y-axis is the 

percentage of based which are either A or T. Overall, there is a significant 

but very weak negative correlation between % AT and plasmid range.  

 

To further test this second prediction, we also examined each of the three categories of plasmid 

mobility separately (Figure 8). When we considered plasmids as independent data points, we 

found a significant negative correlation between the percentage of A or T bases and plasmid 

range for all three classes of plasmid mobility (ANOVA; Non-mobilizable: slope estimate =    
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-1.78, t=-9.54, p<0.001, R2=0.072; Mobilizable: slope estimate=-0.90, t=-6.74, p<0.001, 

R2=0.04; Conjugative: slope estimate=-3.68, t=-20.94, p<0.001, R2=0.28). However, when we 

controlled for host species’ phylogeny and number of plasmids per species, the negative 

correlation for mobilizable plasmids was no longer significant, and the correlation for non-

mobilizable plasmids became positive (MCMCglmm; Non-mobilizable: posterior mean=0.16, 

95 % CI=0.03 to 0.29, pMCMC=0.018, R2<0.001; Mobilizable: posterior mean=-0.040, 95% 

CI=-0.15 to 0.07, pMCMC=0.478, R2<0.001; Conjugative: posterior mean=-0.441, 95% CI=-

0.57 to -0.30, pMCMC<0.001, R2<0.001). Only conjugative plasmids still had a significant 

negative correlation between host-range and AT-content, but the effect size was extremely 

small. These results suggest there was no meaningful correlation for any of the plasmid 

mobility categories when plasmids were not considered independent. 
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Figure 8. AT-content, plasmid range and plasmid mobility. 

Plasmids, each shown as a blue circle, are categorised into one of seven 

plasmid ranges, depending on the taxonomic rank of the common ancestor 

of all genomes which contain a copy of that plasmid. Additionally, plasmids 

are categorised as one of three different mobilities: non-mobilizable, 

mobilizable and conjugative, with one panel for each of these mobilities. The 

y-axis is the percentage of bases which are either A or T. Overall, there was 

mixed, but generally weak, evidence for a correlation in each mobility class. 

Conjugative

Mobilizable

Non−mobilizable

Species Genus Family Order Class Phylum Domain

30

40

50

60

70

30

40

50

60

70

30

40

50

60

70

Plasmid range

% AT



 93 

We also considered how the difference in plasmid AT-content compared to their species’ 

chromosomes, in addition to the AT-content alone, correlated with plasmid range (Figures 9 

and 10). In contrast to the previous results, we found a significant, but very weak, positive 

correlation between the difference in plasmid and chromosome AT-content and plasmid range 

when we considered plasmids as independent, and no correlation when we controlled for 

phylogeny and number of plasmids (Figure 9) (ANOVA: slope estimate = 0.26, t=7.38, 

p<0.001, R2=0.015; MCMCglmm: posterior mean=-0.05, 95% CI = -0.13 to 0.02, 

pMCMC=0.204, R2<0.001).  

 

Figure 9. Difference in plasmid and chromosome AT-content and 

plasmid range.  

Plasmids, each shown as a blue circle, are categorised into one of seven 

plasmid ranges, depending on the taxonomic rank of the common ancestor 

of all genomes which contain a copy of that plasmid. The y-axis shows the 

difference in the percentage of bases that are A or T for plasmids compared 

to their species’ representative chromosome. Overall, there seems to be no 

effect on the AT-content, relative to chromosomes, of plasmid range.  

 

As above, we then considered each of the three plasmid mobility categories separately (Figure 

10). For non-mobilizable plasmids, we found a significant, but very weak, positive correlation 

between plasmid range and the difference between plasmid and chromosome AT-content 
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(ANOVA: slope estimate=0.54, t=7.694, p<0.001, R2=0.048; MCMCglmm: posterior mean = 

0.15, 95% CI=0.01 to 0.28, pMCMC=0.044, R2=0.003). This was also the case for mobilizable 

plasmids when plasmids were considered independent, but this became non-significant when 

we controlled for phylogeny and plasmid number (ANOVA: slope estimate=0.20, t=3.89, 

p<0.001, R2=0.011; MCMCglmm: posterior mean=0.005, 95% CI = -0.11 to 0.11, 

pMCM=0.93, R2<0.001). For conjugative plasmids, the R2 for both analyses was extremely 

small, and the estimate of the correlation was only significant when controlling for species’ 

phylogeny and plasmid number, suggesting no, or very little, correlation overall (ANOVA: 

slope estimate=-0.028, t=-0.39, p=0.697, R2<0.001; MCMCglmm: posterior mean=-0.408, 

95% CI=-0.55 to -0.27, pMCMC<0.001, R2<0.001). 
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Figure 10. Difference in plasmid and chromosome AT-content, plasmid 

range and plasmid mobility. 

Plasmids, each shown as a blue circle, are categorised into one of seven 

plasmid ranges, increasing in range along the x-axis, and one of three plasmid 

mobilities, with one panel for each of these mobilities. The y-axis shows the 

difference in the percentage of bases that are A or T for plasmids compared 

to their species’ chromosome(s). Overall, there were no meaningful 

significant correlations. 
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Discussion 

As expected, we found that plasmids have a consistently higher AT-content than their species’ 

chromosome AT-content (Figures 3 & 4). We then tested the predictions of two hypotheses for 

why this plasmid AT-bias exists by examining how plasmid AT-content correlated with range 

and mobility. Overall, we found little evidence for a negative correlation between plasmid AT-

content and both mobility and range, as predicted by the adaptation hypothesis (Figures 5 & 

7). This was true when considering the percentage of A and T bases alone, and also when 

calculating the difference between plasmid and chromosome AT-content (Figures 6 & 9). 

While we did initially find negative correlations between AT-content and plasmid range for all 

three plasmid mobility classes, these correlations largely disappeared and/or had very small 

effect sizes when controlling for phylogeny, number of plasmids per species and the AT-

content of the species’ chromosomes (Figure 8 & 10). Taken together, these results do not 

support the adaptation hypothesis, and are therefore more consistent with the hypothesis that 

plasmid AT-bias is due to accumulation of mutations in plasmid sequences. 

 

We found that plasmids are consistently enriched with A and T bases compared to 

chromosomes, and that this was the case for almost all of the species we analysed (Figure 3). 

We also found that the AT-content of plasmids is highly correlated with the AT-content of their 

species’ chromosome. Specifically, around 75-88% of the variance in plasmid AT-content was 

explained by the AT-content of their species’ chromosome. This is despite the AT-content of 

chromosomes varying considerably across species, from 33-75%. The strong correlation 

between plasmid and chromosome AT-content requires explanation, since it suggests that 

plasmids have more similar AT-contents to their host chromosomes than we may expect. Some 

authors have suggested this could be evidence of selection on plasmid AT-content (Dietel et 

al. 2018, 2019). While we find no evidence of this in our analyses here, understanding the 

reasons for this correlation is a key question for future work.  

 

We found weak or no support for the hypothesis that AT-bias is an adaptation of plasmids to 

reduce their costs to their host. When analysing plasmids as independent, we found that plasmid 

AT-content was significantly negatively correlated with: (a) plasmid mobility, consistent with 

the first prediction of the adaptation hypothesis (Figure 5); (b) plasmid range, both for all 

plasmids together and when we considered each of the three mobility classes separately, 

consistent with the second prediction of the adaptation hypothesis (Figures 7 & 8).  However, 
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when we controlled for species’ host phylogeny, number of plasmids and the AT-content of 

host species’ chromosomes, these correlations were no longer significant and/or negative 

(Figures 6, 9 & 10). Additionally, the very small effect sizes for all of these results suggests 

that plasmid mobility and plasmid range have very little influence on the AT-content of 

plasmids, in contrast to the two predictions of the adaptation hypothesis. Instead, these results 

are more consistent with the two predictions of the mutation hypothesis. 

 

A caveat here is that as the range of a plasmid becomes broader, it becomes less meaningful to 

compare the plasmid AT-content to its host chromosome, since this is only one of the many 

species it has been sequenced in. This makes assessing support for the second prediction of the 

adaptation hypothesis particularly difficult. Nevertheless, it seems that while there are some 

significant correlations in the direction expected, these are weak, and overall suggest that 

plasmid range has a limited effect on the AT-content of plasmids.  

 

Additionally, another caveat is that the population size of plasmids could potentially be 

positively correlated with their transferability (both mobility and range). Larger population 

sizes would reduce the power of genetic drift and increase the strength of purifying selection, 

together leading to fewer mutations accumulating in these plasmid sequences. When we stated 

that the Mutation hypothesis predicted no correlation between plasmid AT-content and plasmid 

mobility or range, this assumed AT-biased mutations would accumulate at the same rate in all 

plasmids, regardless of transferability. However, a positive correlation between plasmid 

population size and transferability might instead mean that the least transferrable plasmids 

would accumulate mutations at the fastest rate. Therefore, rather than predict no correlation 

between plasmid AT-content and mobility and/or range, the mutation hypothesis may instead 

predict a negative correlation, the same prediction as the adaptation hypothesis. This would 

limit our ability to distinguish between these hypotheses using correlational analyses such as 

those presented in this Chapter. 

 

Overall, we found little support for the adaptation hypothesis explaining why plasmids have 

consistent AT-bias. Instead, our results suggest that the mutation hypothesis may instead be 

more important for driving plasmid AT-bias. Future work could examine signatures of 

selection and/or drift within plasmid sequences to further examine these two hypotheses, which 

would provide additional insights beyond the correlational analyses we have presented here. 

Additionally, calculating the AT-content of each chromosome, rather than using the species’ 
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representative chromosome as we have done here, would allow better comparisons between 

plasmids and their hosts.  

 

Plasmids are not the only intracellular element which display AT-bias. Bacterial 

endosymbionts have also been consistently observed to be AT-rich, both compared to their 

free-living ancestors and to their eukaryotic hosts (Rocha & Danchin 2002; Dietel et al. 2018). 

The suggested reasons for this bias are largely analogous to those we tested for plasmids: either 

living inside a host cell increases the rate at which AT-biased mutations are fixed, or 

endosymbionts evolve AT-rich genomes to reduce their cost to the host cell (Moran 1996; 

Wernegreen & Moran 1999; Rocha & Danchin 2002; Wernegreen 2002). Therefore, similar 

analyses but on endosymbiont genomes could help further assess which of these hypotheses 

matters more for intracellular elements in general. It could also help to consider whether both 

plasmids and endosymbionts contain signatures within their genome that are more consistent 

with adaptation or genetic drift.  
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Chapter 5: Environmental variability and the structure of 

bacterial pangenomes 

Abstract 

Pangenomes, defined as all the genes that have been sequenced in a species, vary substantially 

in structure across bacteria. This variation is usually captured by comparing the percentage of 

genes which are core, those found in all or the majority of genomes, with the percentage that 

are accessory, those found in only a subset of genomes. From a mechanistic perspective, 

pangenome structure is likely to be driven by differences in gene gain and loss across genomes 

of the same species. In contrast, why this seems to vary so much between species is less clear. 

It has been observed that species which encounter more variable environments tend to have 

more variable pangenomes. However, explicit evidence for this correlation is limited. Here, we 

repeat, simplify and extend previous studies to assess the current evidence for a correlation 

between pangenome and environmental variability. We examine whether the pangenome 

structure of 126 bacterial species correlates with two measures of environmental variability, 

and find mixed support. We use these results to identify limitations with the current approach, 

especially with the measures of environmental variability. We then suggest future analyses that 

incorporate measures which better reflect bacterial lifestyles. These future analyses will help 

to better explore what aspects of bacterial lifestyle affect pangenome structure, and potentially 

address whether this pangenome variation is due to neutral or adaptive processes.  

 

Introduction 

The term ‘pangenome’ refers to all of the genes carried by individuals of a certain group. While 

usually used in the context of prokaryotic species’ genomes, a pangenome could refer to all the 

genes found in any group, including animal and plant species, and even humans (McInerney et 

al. 2017b).  

 

However, the structure of eukaryote and prokaryote pangenomes appears to be very different. 

In most eukaryotic species, the genomes of individuals usually differ predominantly at the 

allelic level. For example, all humans usually carry the LCT gene to produce lactase, the 

enzyme that allows the digestion of milk (Ingram et al. 2009). Whether this enzyme continues 

to be produced into adulthood depends on which allele of the gene a person carries. In contrast, 

individuals of the same bacterial species tend to vary much more at the genetic level. For 

example, one individual may carry a suite of genes that allow them to break down certain food 
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sources, invade certain hosts and survive in certain toxic environments (Goyal 2018). Another 

individual of the same species may carry very few of these genes, but instead have its own suite 

of genes which provide similar functions but for different food sources, hosts and toxic 

environments. 

 

As such, bacterial pangenomes usually consist of genes which are found in all members of a 

species, called ‘core’ genes, and genes found in only a subset of individuals, called ‘accessory’ 

genes. As more and more bacterial genomes have been sequenced, it has become apparent that 

the relative size and proportion of the core and accessory genome can vary substantially 

between different bacterial species. What causes so much variation between species is not fully 

understood. 

 

From a mechanistic perspective, the core and accessory structure of bacterial pangenomes is 

produced by differential gain and loss of genes (Puigbò et al. 2014; Domingo-Sananes & 

McInerney 2021). The gain of new genes occurs frequently in bacteria, particularly through 

horizontal gene transfer (HGT). This is a process whereby individual bacteria can acquire genes 

from other individuals within the same generation. HGT can occur between different species, 

allowing individuals to acquire genes from a potentially unlimited pool. With all this gene gain, 

individual bacterial genomes could potentially become huge. Therefore, there must also be 

frequent loss of genes to maintain genomes of the same species at similar sizes (McInerney et 

al. 2017b; Domingo-Sananes & McInerney 2021). Together, differences in the gain and loss 

of genes could explain how pangenome structure varies between species. 

 

It has been observed that in general, species with more variable environments and lifestyles 

tend to have more variable pangenomes (McInerney et al. 2017b, a; Maistrenko et al. 2020). 

This has been suggested to be due to the relative diversity of genes gained, and different 

environments selecting for different genes to be lost. First, the variation of genes that 

individuals from one bacterial species acquire is likely to depend on the diversity of other 

bacterial species that they regularly encounter. This diversity of encountered species probably 

correlates with the number and variety of environments individuals of a species regularly live 

in. A model by Niehus et al. (2015) showed that HGT could maintain and even increase genetic 

diversity, but only when migration of new genotypes into the population was permitted (Niehus 

et al. 2015). Therefore, more variable environments would expand the number and variety of 
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genes that bacteria could potentially acquire, which would then be reflected in a species’ 

pangenome, as part of a largely neutral process (Andreani et al. 2017).  

 

Second, if individuals only encounter one environment out of a large number that are possible 

for that species, the fitness of such individuals would only be under selection for that particular 

environment (Polz et al. 2013; McInerney et al. 2017b; Goyal 2018). Consequently, any genes 

they carry that are useful in other environments will no longer be useful, and will likely be lost. 

The more environments a species can live in, the more variable selection on gene loss would 

be across individuals of the same species. These ‘Gene-by-environment’ interactions could be 

important in shaping the structure of pangenomes (Domingo-Sananes & McInerney 2021). 

Therefore, more variable environments could increase the diversity of potential selection on 

gene loss, leading to a higher proportion of genes that are not present in all genomes of the 

species.  

 

However, the evidence for a correlation between bacterial lifestyle and pangenome variability 

is largely observational, with authors noting patterns or comparing certain species (McInerney 

et al. 2017b; Maistrenko et al. 2020; Domingo-Sananes & McInerney 2021). Recently, 

Maistrenko et al. (2020) studied how the environmental variability of 155 bacterial species 

correlated with different measures of their pangenome structure. Of nine measures examined, 

they found only the size of the core genome was significantly positively correlated with the 

number of environments a species lived in (Maistrenko et al. 2020). This was despite 

environmental preferences explaining up to 49% of the variance in species’ pangenome 

measures. Their results suggest that while lifestyle and environment variability are likely to be 

important for determining pangenome structure, the relative importance of the different 

aspect(s) of a species’ lifestyle and/or environment remains unknown. 

 

To understand any potential effect of lifestyle and environment in determining the structure of 

species’ pangenomes, a comparative analysis across bacteria is required that considers multiple 

aspects of species’ lifestyle and environment. In particular, these aspects should have a clear 

hypothesised influence on the relative balance of gene gain and loss, which would in turn 

determine pangenome structure. While Maistrenko et al. (2020) considered many measures of 

variation across pangenomes, their measure of environmental variability, defined as the 

number of 63 habitats a species’ 16S rRNA had been sequenced in, was comparatively simple. 
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There is the potential for future analyses to consider measures that are more informed by our 

understanding of bacterial lifestyles. We shall return to this point in the discussion.  

 

Here, we provide an initial step by repeating, simplifying and extending previous analyses to 

review the current evidence for a potential positive correlation between species’ environmental 

and pangenome variability. Specifically, we analyse whether different measures of pangenome 

structure correlate with two measures of environmental variability across 126 bacterial species. 

We use these results to discuss potential caveats and limitations of these kinds of analyses. 

Consequently, we then suggest potential ways to expand such analyses, with a particular focus 

on next steps to fully understand what aspects of bacterial environments and/or lifestyles affect 

species’ pangenome structure and why.  

 

Methods  

Collection of pangenome data 

We collected bacterial pangenome data from panX (https://pangenome.org/) (Ding et al. 2018). 

PanX is a web-based pangenome database that uses a pipeline to break annotated genomes into 

genes and then cluster them into orthologous groups. To allow identification of orthologous 

gene clusters and establishment of pan-genomes, panX only includes species that have a 

minimum of 10 complete genomes in the RefSeq database 

(https://www.ncbi.nlm.nih.gov/refseq/). We retrieved data on 126 bacterial pan-genomes 

composed of 6234 genomes. PanX stores data in JSON format and we downloaded this using 

GNU Wget (https://www.gnu.org/software/wget/).  

 

Analysis of pangenome data 

We performed all our analyses of the pangenomes in R (version 4.0.2). We used the R package 

‘jsonlite’ to convert the JSON data files into R objects. The pangenome data we used included 

information on orthologous genes and the strains in which they were found. We thus 

categorized genes into core or accessory genes based on this information. There is some 

inconsistency in how to define core genes in the literature. Some authors define core genes as 

those present in all genomes, while others choose a high threshold that allows for an occasional 

genome not to carry that gene (Medini et al. 2005; Maistrenko et al. 2020; Hall et al. 2021; 

Whelan et al. 2021). We decided to analyse our data with a mix of both approaches, and have 

analysed core genes using three different thresholds. Specifically, we have defined core genes 
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as: (1) genes present in 100% of genomes; (2) genes present in ³ 90% of genomes; (3) genes 

that present in ³ 80% of genomes. 

 

We were also interested in genes that only exist in small subset of genomes. These are the 

genes that vary most between genomes, and are therefore potentially most correlated with the 

environment. Genes found in only a subset of genomes are defined as ‘accessory’ genes, and 

some authors refer to accessory genes found in only a small subset of genomes as ‘cloud’ genes. 

We will refer to them here as accessory genes for simplicity. We defined these accessory genes 

with two thresholds: (1) genes present in £ 10% of genomes; (2) genes present in £ 20% of 

genomes.  

 

We then calculated the percentage of core and accessory genes for each species as followed: 

!"#$"%&'("	*+	$*#"	("%",	 = %./0"#	*+	$*#"	("%",
%./0"#	*+	("%", × 100%	. 

 

!"#$"%&'("	*+	'$$",,*#6	("%",	 = %./0"#	*+	'$$",,*#6	("%",
%./0"#	*+	("%", × 100%	. 

We did this for all thresholds of core and accessory genes stated above. 

 

In addition, we were also interested in understanding the average percentage of core genes at 

the individual genome level, rather than the entire pangenome level. Consequently, we 

calculated the percentage of core genes at the genome level for each species as followed: 

!"#$"%&'("	*+	$*#"	("%",	 =
∑ %./0"#	*+	$*#"	("%",	8%	("%*/"	8

%./0"#	*+	("%",	8%	("%*/"	8
%
8

%./0"#	*+	("%*/"(%) × 100%	. 

We did this for the three thresholds of core genes, as stated above.  

 

Some genomes did not contain any genes found in <10 or <20% and so this would bias our 

calculations of the average percentage of accessory genes at the genome level. Therefore, we 

only looked at the percentage of accessory genes at the pangenome level. 

 

Measures of environmental variability  

We used data from two different studies which both estimated the number of environments that 

different bacterial species lived in. The first measure compared species’ 16s rRNA sequences 

to a diverse range of metagenome datasets, and recorded the number of 63 types of environment 
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a species was found in (Maistrenko et al. 2020). Examples of these 63 environments include: 

ice, lake, wetland, rock, skin, stomach, blood, ray finned fish, mammal, rhizosphere, forest and 

mangrove. The second measure also used 16s rRNA datasets from a diverse range of 

environments, and recorded the number of five broader environments in which a match was 

found for each species: water, wastewater, sediment, soil and host (Garcia-Garcera & Rocha 

2020).  

 

Statistics  

We carried out all statistical analysis and graph plotting in R (version 4.0.2). We used the R 

package MCMCglmm to disentangle the associations between bacterial pangenome features 

and environmental variability (Hadfield 2010). The evolutionary history of bacteria could mean 

closely related species have more similar pangenome structure, regardless of their 

environmental variability. Consequently, we controlled for the phylogenetic relationships 

between species in our dataset by setting the phylogeny as a random effect in our model. We 

generated a phylogeny of the 126 species in our dataset using the method described in Chapter 

2. We have reported the posterior mean, 95% Credible Intervals (functionally similar to 95% 

Confidence Intervals), the pMCMC value (used here as ‘p-value’), and the R2 of the fixed effect 

for each model in Table 1.  

 

Results  

Substantial variation in pangenome structure across species 

We found extreme variation between species in the structure of their pangenomes (Figure 1). 

Across all measurements, the species with the most variable pangenome was Escherichia coli, 

while the species with the least variable pangenome was Rickettsia japonica. For example, only 

1.6% of the genes in the Escherichia coli pangenome were core genes found in all genomes, 

and 78.2% were accessory genes found in less than 10% of genomes. In contrast, 91.4% of 

genes in the Rickettsia japonica pangenome were found in all genomes, and only 0.2% were 

found in less than 10% of genomes.  

 

We also considered how variable individual genomes of the same species were to one another. 

Specifically, we counted the number of core genes in each genome, and divided this by the 

total number of genes in that genome. We then calculated the mean value across all genomes 

in a species (Figure 2). We did this for all three thresholds of core (100%, 90% and 80%). This 
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measure was also extremely variable across species. On average, only 9.8% of genes in an 

average Escherichia coli genome were found in 100% of genomes, and 44.1% of genes were 

found in at least 80% of genomes. In contrast, 94.2% of an average Rickettsia japonica genome 

consists of core genes found in 100% of genomes, with 98.8% of genes found in at least 80% 

of genomes.  

 

Overall, we found that both pangenomes and individual genomes are extremely variable across 

species. For some species, a very small proportion of genes were found in all genomes, while 

in others virtually all genes were found in the majority of genomes. We next looked at whether 

the environmental variability of species could explain this variation. 

 

 
Figure 1. Percentage of core and accessory genes across species’ 

pangenomes. 

Histograms showing the distribution of the percentage of genes that are (a) 

core and (b) accessory, across all 126 species’ pangenomes. The horizontal 

dashed line indicates the median percentage of core and accessory genes, in 

(a) and (b) respectively. The broad width of the histogram bars indicates that 

species vary considerably in their pangenome structure. 

a) b) 
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Figure 2. Percentage of core genes in an average genome across species.  

Histogram showing the distribution of the percentage of genes which are core 

in an average genome, across 126 species. Here, core is defined as 100% of 

genomes. The dashed line is the median species for the percentage of genes 

in an average genome that are found in all genomes. 

 

No correlation between environmental variability and the percentage of core or accessory 

genes in species’ pangenomes  

The lifestyle of a species could explain why species differ so much in the structure and 

variability of their genomes. To explore this, we examined whether the environmental 

variability of species could explain some of this variation. In our analyses, we used two 

measures of environmental variability. Both were based on the number of environments that a 

species’ 16S rRNA had been found in.  

 

First, we measured environmental variability using the number of five broad environments 

each species was found in. We then compared this to the percentage of the pangenome that was 

core genes, defined as genes present in 100%, 90% or 80% of a species’ genomes, and the 

percentage of the pangenome that was accessory genes, defined as those present in 10% or 

20% of a species’ genomes. 
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We found no significant correlation between the number of environments and the percentage 

of both core and accessory genes in a species’ pangenome (Table 1, rows 1-5; Figures 3 & 4). 

This lack of correlation was true for all three thresholds of how we defined core genes, and 

both thresholds of how we defined accessory genes (Tables 1, rows 1-5; Figures 3 & 4).  

 

 Threshold Posterior 
mean 

Lower 
95% CI 

Upper 
95% CI pMCMC Sigificance R2 for fixed 

effect 
% Core vs Number of Environments (Pangenome) 
1 100% -3.341 -6.826 0.458 0.082 None 0.019 
2 90% -2.998 -7.338 1.038 0.166 None 0.013 
3 80% -2.871 -6.801 1.210 0.19 None 0.012 
% Accessory vs Number of Environments (Pangenome) 
4 10% 2.301 -1.551 5.905 0.238 None 0.010 
5 20% 2.903 -1.111 6.916 0.128 None 0.013 
% Core vs Number of Environments (Average Genome) 
6 100% -5.199 -8.463 -1.295 <0.001 *** 0.071 
7 90% -4.248 -6.683 -1.837 <0.001 *** 0.081 
8 80% -2.870 -4.913 -0.589 0.01 ** 0.058 
% Core vs Ubiquity (Pangenome) 
9 100% 0.387 -0.135 0.929 0.156 None 0.014 
10 90% 0.356 -0.192 0.936 0.212 None 0.010 
11 80% 0.339 -0.173 0.948 0.236 None 0.009 
% Accessory vs Ubiquity (Pangenome) 
12 10% -0.229 -0.740 0.250 0.386 None 0.007 
13 20% -0.242 -0.772 0.267 0.356 None 0.006 
% Core vs Ubiquity (Average Genome) 
14 100% 0.326 -0.166 0.752 0.15 None 0.018 
15 90% 0.118 -0.203 0.447 0.466 None 0.004 
16 80% 0.103 -0.161 0.394 0.444 None 0.004 

 

Table 1. MCMCglmm results.  

Each row is the result of one of the MCMCglmm models analysed in this 

Chapter. Analyses are grouped by the measures of pangenome and 

environmental variability they were analysing for a correlation. Analyses that 

are identical except for the threshold that was used to define core and/or 

accessory genes are therefore grouped. The threshold column indicates is the 

specific percentage of genomes used in that model to define core or accessory 

genes. All models analyse the pangenomes of 126 species. 
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Figure 3. No correlation between the number of environments and the 

percentage of core genes in species’ pangenomes.  

The x-axes indicate the number of five broad environments a species’ 16S 

rRNA was sequenced in, and the y-axes indicate the percentage of genes in 

a species’ pangenome which are core genes, defined at three thresholds: (a) 

100% of genomes; (b) 90% of genomes; (c) 80% of genomes. Each dot is a 

species, and the horizontal bars are the mean percentage for all species of 

those found in the same number of environments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) c) 
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Figure 4. No correlation between the number of environments and the 

percentage of accessory genes in species’ pangenomes.  

The x-axes indicate the number of five broad environments a species’ 16S 

rRNA was sequenced in, and the y-axes indicate the percentage of genes in 

a species’ pangenome which are accessory genes, defined at two thresholds: 

(a) 10% of genomes; (b) 20% of genomes. Each dot is a species, and the 

horizontal bars are the mean percentage for all species of those found in the 

same number of environments.  

 

 

Negative correlation between the number of environments and the percentage of core 

genes in a species’ average genomes 

However, we did find a negative correlation between the number of environments and our 

measure of variability at the genome level. Specifically, this measure considered the percentage 

of a species’ average genome that was core genes. We found a significant negative correlation 

between this measure and the number of environments for all three thresholds of how we 

defined core genes (Table 1, rows 6-8; Figures 5).  

 

 

 

 

 

a) b) 
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Figure 5. Negative correlation between the number of environments and 

the percentage of core genes in a species’ average genome.  

The x-axes indicate the number of five broad environments a species’ 16S 

rRNA was sequenced in, and the y-axes indicate the percentage of genes in 

a species’ average genome which are core genes, defined at three thresholds: 

(a) 100% of genomes; (b) 90% of genomes; (c) 80% of genomes. Each dot is 

a species, and the horizontal bars are the mean percentage for all species of 

those found in the same number of environments.  

 

No correlation between environment ubiquity and the percentage of core and accessory 

genes in species’ pangenomes 

Second, we measured environmental variability using the number of 63 more specific 

environments a species was sequenced in. The authors of the original study which used this 

measure referred to this as ‘environment ubiquity’ (Maistrenko et al. 2020). We will also use 

this terminology to make clear that while this is also measure of the number of environments, 

it is a different measure to the results in Figures 3, 4 and 5.  

 

Consistent with the previous measure of environmental variability, we found no correlation 

between the environment ubiquity of species and the percentage of core or accessory genes in 

species’ pangenomes (Table 1, rows 9-13; Figures 6 and 7). This was the case for all thresholds 

of core and accessory genes we considered.  

 

 

a) b) c) 
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Figure 6. No correlation between environment ubiquity and the 

percentage of core genes in species’ pangenomes.  

The x-axes indicate the number of 63 environments a species’ 16S rRNA was 

sequenced in, and the y-axes indicate the percentage of genes in a species’ 

pangenome which are core genes, defined at three thresholds: (a) 100% of 

genomes; (b) 90% of genomes; (c) 80% of genomes. Each dot is a species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) c) 
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Figure 7. No correlation between environment ubiquity and the 

percentage of accessory genes in species’ pangenomes.  

The x-axes indicate the number of 63 environments a species’ 16S rRNA was 

sequenced in, and the y-axes indicate the percentage of genes in a species’ 

pangenome which are accessory genes, defined at two thresholds: (a) 10% of 

genomes; (b) 20% of genomes. Each dot is a species. 

 

 

No correlation between environment ubiquity and the percentage of core genes in a 

species’ average genome 

We also found no correlation between the environment ubiquity and the percentage of core 

genes in a species’ average genome (Table 1, rows 14-16; Figure 8). This was true for all three 

thresholds we used to define core genes. These results are in contrast to the significant negative 

correlations we found between the number of environments and the same measure of variability 

between species’ genomes.  

 

 

 

 

 

 

 

a) b) 
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Figure 8. No correlation between environment ubiquity and the 

percentage of core genes in a species’ average genome.  

The x-axes indicate the number of 63 environments a species’ 16S rRNA was 

sequenced in, and the y-axes indicate the percentage of genes in a species’ 

average genome which are core genes, defined at three thresholds: (a) 100% 

of genomes; (b) 90% of genomes; (c) 80% of genomes. Each dot is a species. 

 

Positive correlation between environment ubiquity and the size of the core genome. 

Finally, we considered the size of the core genome, defined as the number of genes which are 

found in all genomes. This is the only measure of pangenome structure that Maistrenko et al. 

(2020) found was significantly correlated with their measure of environment ubiquity. In 

agreement with their results, we also found a significant positive correlation between core 

genome size and the environment ubiquity of species (Figure 9) (MCMCglmm; posterior mean 

= 63.7, 95% CI = 39.6 to 88.0, pMCMC < 0.001, R2 of environment ubiquity = 0.19). The 

environment ubiquity of a species explained almost 20% of the variation in core genome size, 

once phylogeny was controlled for.  

 

 

 

 

 

 

 

a) b) c) 
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Figure 9. Positive correlation between environment ubiquity and core 

genome size.  

The x-axis indicates the number of 63 environments a species’ 16S rRNA 

was sequenced in, and the y-axis is the number of genes in a species’ 

pangenome found in 100% of genomes. Each dot is a species, and the grey 

line is the slope estimated by a MCMCglmm analysis controlling for 

phylogenetic relationships between species. 
 

Discussion  

We found mixed support for a correlation between species’ environmental and pangenome 

variability. We found that the number of five broad environments a species’ 16s rRNA was 

sequenced in was negatively correlated with the percentage of genes in an average genome that 

were core genes (Figure 5). We also found, in agreement with Maistrenko et al. (2020), that 

the number of 63 environments a species’ 16s rRNA was sequenced in was positively 

correlated with the size of their core genome (Figure 9).  

 

However, we found no significant correlations between both measures of environmental 

variability and the percentage of core or accessory genes in species’ pangenomes (Figures 2-4 

& 6-8). Considering the percentage of core and accessory genes at the pangenome level, rather 

than the genome level, could be potentially misleading, because selection acts on individual 
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genomes, not pangenomes. Therefore, this could explain why we found that only the 

percentage of core genes at the average genome level was significantly correlated with the first 

measure of environmental variability.  

 

Furthermore, the positive correlation between core genome size and the second measure of 

environmental variability also suggests that considering genetic variation at the genome level 

could be more informative, since again this is an entity which selection will be able to act upon. 

 

Estimating species’ environmental variability 

The number of environments that a species’ 16S rRNA has been sequenced in could potentially 

be a poor proxy of environmental variability. First, even if the 16s rRNA of a species is 

sequenced in an environment, this does not necessarily mean that this is part of that species’ 

natural habitat. For example, while gut bacteria such as Escherchia coli are often isolated from 

rivers, this is usually because of sewage contamination, rather than these bacteria naturally 

living in aquatic habitats long-term.  

 

Second, the number of environments does not consider the potential for variation within these 

environments. If what matters for pangenome structure is the availability of new genes, some 

environments may be better able to provide this than others. For example, the gut is likely to 

have a high turnover of bacteria, due to the constant influx of new bacteria via food intake. 

Additionally, while soil is considered as one environment in both measures we considered here, 

soil is a highly variable environment with multiple niches, potentially providing many 

opportunities to gain and lose genes. In contrast to these, blood, which is usually sterile, is 

likely to only have one or a few species present. Therefore, while the human gut, soil and blood 

are three of the potential habitats in the second measure of environmental variability we 

considered, blood is likely to provide far fewer opportunities to acquire new genes than the gut 

and soil.  

 

Third, such measures are limited by which environments have had their metagenomes 

sequenced, and how frequently. For example, species that live in root nodules may only be 

described as soil specialists if no root nodule metagenomes have been deposited into public 

databases, even though they may only transiently live in the soil. This is likely also the case for 

other species which may sometimes live in more niche habitats.  
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Future directions  

When attempting to address whether bacterial lifestyle can explain why pangenomes are so 

variable, we think it is important to consider actual features of species’ lifestyles. Additional 

measures are required to truly understand what features of pangenomes vary with a species’ 

environment, and we have started carrying out such analyses. In particular, we suggest analyses 

based on the lifestyle of species, rather than these more passive presence and absence measures. 

A targeted, species by species approach, would ensure that the habitat and lifestyle of species 

was more accurately represented. It would also allow better comparisons between species that 

occupy similar environments, but which may have different potentials to acquire genes.  

 

What is likely to be important is considering the environmental variability that is relevant to 

individual bacterial cells. Therefore, in future analyses, we will collect data on features of 

bacterial lifestyles that have clear predictions for how this may affect differences in the gain 

and loss of genes across genomes. This will also allow different aspects of species’ lifestyle to 

be considered, beyond simply how variable their environments are. For example, we may 

expect bacteria that live inside other cells to encounter more stable environments, and so 

categorising species’ based on different lifestyle traits would allow comparison of the 

pangenomes of intracellular vs free-living bacteria. Alternatively, categorising host-living 

species into those with either broad or narrow ranges, similar to the approach in Chapter 2, 

could be another feature of bacterial lifestyle that may be predicted to affect the structure of 

their pangenomes. 

 

Additionally, to understand whether neutral or adaptive processes are more important for 

determining the structure of species’ pangenomes, we propose analysing whether signatures of 

these processes are present in these genomes. Specifically, we will test whether signatures of 

positive selection are stronger in accessory genes compared to core genes, which would be 

predicted by the adaptive hypothesis. We would also analyse whether signatures of evolution 

in the accessory genome are more consistent with predominantly adaptive or neutral processes. 

Finally, we could analyse the presence of such adaptive or neutral signatures with respect to 

species’ lifestyles. This would allow us to explore whether having additional accessory genes 

is always adaptive, but to different extents in certain species, or whether the genomes of some 

species do not appear to be under selection to have accessory genes at all.  
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Chapter 6: Discussion 
Here, I first summarise and discuss the key results of my thesis. Each of Chapters 2-5 has their 

own discussion, and so I use this Chapter to draw links between the themes discussed in my 

thesis. I also discuss potential future directions, in particular for how we can study bacterial 

cooperation using comparative analyses across genomes. Finally, I also consider current 

problems with these kinds of analyses, and suggest how these can be resolved. 

 

Summary and discussion of results 

Horizontal gene transfer and bacterial cooperation 

In Chapter 2, I used comparative genomics to test the hypothesis that horizontal gene transfer 

could help stabilise cooperation in bacteria. As in most previous studies examining this 

hypothesis, I focused on horizontal gene transfer via plasmids. I identified two key predictions 

of the hypothesis and tested these by comparing the chromosomes and plasmids of multiple 

genomes from 51 bacterial species. Both of these predictions related to where genes for 

cooperation would be expected to be located in bacterial genomes, if plasmids were particularly 

important in stabilising cooperation across species.  

 

However, contrary to these predictions, I found that genes coding for extracellular proteins, 

which are likely to act as cooperative public goods, did not make up a higher proportion of:   

(i) plasmids compared to chromosomes; (ii) mobile plasmids compared to non-mobile 

plasmids. Therefore, across species, plasmids were not enriched with genes for cooperation. 

Furthermore, the mobility of plasmids has no impact on whether they carry cooperative genes. 

This suggests that even in cases where cooperative genes are coded for by plasmids, this is not 

to increase relatedness at the cooperative loci. 

 

What does this mean for the cooperation hypothesis? We cannot say plasmids never stabilise 

cooperation, either in certain scenarios, or in certain species. Additionally, we did not consider 

other forms of horizontal gene transfer, and so cannot rule out a potential role of other mobile 

genetic elements here. However, I predict that analyses on other vectors of horizontal gene 

transfer, such as bacteriophages and integrative conjugative elements, would yield a similar 

lack of support for the hypothesis. I am collaborating with others in my research group to 

further explore whether this is the case. 
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Overall, Chapter 2 is arguably the most comprehensive test of this cooperation hypothesis to 

date. Our results suggest that horizontal gene transfer via plasmids is unlikely to play an 

important consistent role in determining where genes for cooperation are carried in bacterial 

genomes. Taken together, we found no evidence for a widespread and consistent role of 

plasmids in stabilising cooperation. 

 

However, there are limitations of the analyses and results in Chapter 2, and I discuss the 

implications of these within the Chapter. One of the limitations surrounds the method we used 

to identify genes for cooperation. Later in this Chapter, I further discuss this limitation as part 

of a section on the future of studying the genetics of cooperation in bacteria. There, I suggest 

how new tools could help to improve the generality and reliability of future comparative 

genomic analyses that also focus on the evolution of cooperation.  

 

Beyond plasmid mobility 

I also tested the predictions of two alternate hypotheses for why genes for extracellular proteins 

were found more on plasmids of some species, but not others. First, plasmids could allow genes 

to be rapidly gained and lost depending on environmental conditions. This would be 

particularly useful for species which experienced more variable environments. Second, 

plasmid carriage of genes could provide benefits beyond the potential mobility of plasmids. 

These benefits may also be important for species with more variable environments, if plasmid 

carriage conferred benefits such as increased gene expression via high copy number, for 

example. To test these two hypotheses, I collected data on three different measures of species’ 

environmental variability. I then examined the extent to which these explained variation in how 

overrepresented genes coding for extracellular proteins were on species’ plasmids compared 

to chromosomes.  

 

Overall, the results of Chapter 2 were most consistent with the hypothesis that genes for 

extracellular proteins may be carried on plasmids for reasons other than plasmid mobility. Of 

the three measures of environmental variability, I found that only one was significantly 

correlated with whether plasmids were enriched with genes coding for extracellular proteins. 

Specifically, I found that pathogen species with a broad host-range had the highest proportion 

of genes for extracellular proteins on their plasmids compared to their chromosomes. This was 

true when comparing these species to both pathogens with a narrow-host range, and non-
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pathogen species. This suggests that pathogenic species with more variable environments code 

for proportionally more genes coding for extracellular proteins on their plasmids.  

 

I then examined the reason for the difference between broad and narrow host-range pathogens. 

I found that plasmids of broad host-range plasmids were particularly enriched with genes for 

extracellular proteins involved with pathogenicity. Taken together with our finding that 

plasmid mobility did not explain why some plasmids carried more genes coding for 

extracellular proteins, an ability of plasmid transfer to allow hosts to gain and lose genes cannot 

explain the variation seen across species. Instead, plasmids seem likely to carry these genes for 

reasons other than plasmid mobility. Furthermore, these benefits seem particularly useful to 

pathogens.  

 

One feature of plasmids that could provide a benefit to their hosts is copy number. Plasmids 

frequently exist in multiple copies per cell, which could potentially lead to high expression of 

plasmid genes relative to those on the chromosome. Moreover, there is also evidence that 

bacterial hosts may have some control over the copy number of their plasmids (Rodríguez-

Beltrán et al. 2021). This potential high expression of plasmid genes, coupled with the ability 

of hosts to reduce expression when no longer required, could provide a major benefit of 

plasmids to their hosts. Crucially, these potential benefits of copy number would be possible 

for all plasmids, including plasmids incapable of transferring via conjugation. Therefore, copy 

number could be a feature of plasmids in general that provides a benefit to their hosts, and 

maintains genes which benefit from high expression on plasmids in the evolutionary long-term.  

 

Whether the copy number of plasmids determines which genes they carry requires further 

analysis. Particularly, I think experimental studies would be most helpful, since copy number 

is not currently easy to estimate using plasmid sequences alone. First, I would experimentally 

quantify the copy number of plasmids in a wide range of strains and species. I would then 

examine how the copy number of plasmids varied with respect to key lifestyle characteristics 

of the different species, such as pathogenicity and host-range. I would expect that the copy 

number of broad host-range pathogens would, on average, be greater than non-pathogens or 

narrow host-range pathogens, if copy number is the feature driving the pattern I found in 

Chapter 2.  
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Additionally, to explicitly test how copy number may influence selection on genes for 

extracellular proteins, I would set up experiments comparing identical strains that differ only 

in the copy number of a plasmid coding for a particular extracellular protein, such as a protease. 

In a growth media where production of the protein was important for cell growth, a high copy 

number may be expected to lead to higher growth due to increased gene expression, and 

consequent protein production. Alternatively, very high copy number may confer additional 

energy and resource costs on the host, and outweigh any benefits of increased expression of 

the protein. Together, these experiments would provide insights into the relative benefits and 

costs of plasmid copy number, and whether this feature of plasmids could explain why they 

sometimes carry proportionally more genes for extracellular proteins.  

 

Overall, Chapter 2 suggests that bacterial lifestyle and environmental conditions are potentially 

more important than bacterial sociality for determining whether extracellular proteins are 

coded for by plasmids. 

 

Plasmid size, range, mobility and base content 

In Chapter 3, I explored three key characteristics of plasmids: size, mobility and range. Each 

of these is highly variable across bacterial plasmids, and I considered how these correlated with 

one another across 3522 plasmids from 51 bacterial species. I speculated that these could be 

candidate ‘life-history’ traits of plasmids (Stearns 1992). Understanding how life history traits 

correlate with one another is a key question in evolutionary biology, and helps us to understand 

how natural selection acts upon these traits (Stearns 1989, 2000). Across plasmids, I found that 

plasmid mobility and range were positively correlated, suggesting that the ability to conjugate 

increases the range of a plasmid. In agreement with previous studies, I also found that 

conjugative plasmids were largest in size, while mobilizable plasmids were smallest (Smillie 

et al. 2010; Nishida 2012; Rodríguez-Beltrán et al. 2021). Finally, the direction of a correlation 

between plasmid range and size was different depending on the mobility of plasmids 

considered. While the effect sizes for these correlations were relatively low, these results 

suggest some potential interactions between selection on plasmid size, mobility and range. 

 

In Chapter 4, I tested the predictions of two hypotheses for why plasmid sequences are 

consistently enriched with A and T bases. As expected, I found that plasmid AT-content was 

highly variable across plasmids, and consistently higher than chromosomes from the same 

species. I also found that the AT-content of plasmids was highly correlated with the AT-content 
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of the chromosome(s) of the species it was sequenced in. To test the two hypotheses, I analysed 

how plasmid AT-content varied with respect to plasmid mobility and range. Overall, my results 

were more consistent with the hypothesis that AT-bias in plasmids is due to a greater 

accumulation of mutations, which are biased towards A and T bases, in plasmid compared to 

chromosome sequences. The alternative hypothesis, that AT-bias is an adaptation to reduce the 

cost of plasmids to their hosts, was less consistent with my results.  

 

Together, Chapters 3 and 4 provide insights into the various potential selection pressures that 

plasmid sequences may experience. Selection pressures on plasmids likely occur at multiple 

levels: from individual genes on plasmids, to plasmids as entities, and to selection on the 

benefits and costs of plasmids to their bacterial host. Selection at these different levels will not 

necessarily be in the same direction, which could potentially mask some of their effects. For 

example, for potential selection pressures on plasmid size, an individual gene will be under 

selection to be consistently gained by plasmids, regardless of whether this gain is beneficial to 

the plasmid, or the host the plasmid is found in. However, if selection at the plasmid and host 

level may be to lose a particular gene, this will be in conflict with selection on the gene itself. 

Therefore, the relative influence of selection at these multiple levels is also important to 

consider for understanding the evolution of plasmids, and their many potential roles in bacterial 

lifestyles.  

 

Are plasmids analogous to endosymbionts?  

The selection pressures that plasmids may be under could be indicative of life inside cells more 

generally. It has been suggested that plasmids and endosymbiotic bacteria have much in 

common (Dietel et al. 2018). Both live within the cytoplasm of their host, and as such may 

predicted to undergo similar selection pressures. For example, both will likely be under 

selection to maximize the likelihood of their retention within the cell, and also their own 

transmission (either vertically or horizontally). Similarly, both have sequences which are 

consistently AT-biased, suggesting that the same reasons may drive this phenomenon across 

intracellular elements more generally (Dietel et al. 2019). The extent to which these 

comparisons are useful for our understanding of the evolution of both plasmids and 

endosymbionts has yet to be fully addressed and tested. Still, a better understanding of how 

plasmids and endosymbionts adapt to life inside cells will help to identify how such 

relationships evolve, and why they remain stable. I suggest that future work should further 

explore similarities between plasmids and endosymbionts, including whether and to what 
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extent the study of their evolution can be considered under the same theoretical framework. 

Outstanding questions include:  

(1) To what extent does selection act in the same way on plasmids and endosymbionts?  

(2) How does the host-range and mobility of plasmids and endosymbionts affect 

selection on their benefits and costs to hosts?  

(3) Are the signatures of selection and/or drift analogous in plasmid and endosymbiont 

sequences?  

 

To answer these, I suggest a combination of comparative, theoretical and experimental 

approaches. First, I would use a comparative genomics approach to compare AT-bias among 

mutualistic and parasitic endosymbiont species. I would collect data on multiple endosymbiont 

species, including their AT-content and effect on host, from online databases. To control for 

potential confounding variables, I would also collect data on transmission (horizontal vs 

vertical), the duration of the endosymbiotic relationship, and genome size. I would use 

statistical methods that allow for phylogenetic relationships to be controlled for. This kind of 

project would be analogous to the plasmid analyses presented in Chapter 4 of this thesis. I have 

actually already begun initial data collection for this project, which I plan to expand in the 

future. 

 

Horizontal gene transfer and the structure of bacterial genomes 

While horizontal gene transfer does not appear to favour cooperation, it is still likely to affect 

bacterial evolution in other ways. In Chapter 5, we studied how the structure of bacterial 

pangenomes, defined as all the genes sequenced in a group of genomes, varied across species 

with different lifestyles. We used two measures of environmental variability to test the often-

mentioned observation that species with more variable environments are those with more 

variable pangenomes (McInerney et al. 2017; Maistrenko et al. 2020).  

 

We found that most measures of pangenome variability were not positively correlated with the 

number of environments a species was found in. However, we did find that the size of the core 

genome was positively correlated with environmental variability, in agreement with a previous 

study (Maistrenko et al. 2020). Overall, this suggests that while environmental variability is 

important for certain aspects of the structure of pangenomes, this may not be the case for all 

features. Future analyses should help to pull apart why only some measures of pangenome 
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structure were correlated with environmental variability. This is something I am currently 

working on, and plan to continue in the future.  

 

When attempting to address whether bacterial lifestyle can explain why pangenomes are so 

variable, I think it is important to consider actual features of species’ lifestyles.  Measures such 

as the number of environments a species’ 16S rRNA has been sequenced in may not capture 

the aspects of bacterial lifestyle that actually determine how selection and/or other evolutionary 

processes act on species’ genomes. In Chapter 5, I discussed how I plan to collect data on 

features of bacterial lifestyles that have clear predictions for how they may affect differences 

in the gain and loss of genes across genomes. Analysing how these correlate with measures of 

pangenome variability will help to provide a better and more comprehensive answer to the 

question of how bacterial lifestyle could affect variation in species’ pangenomes, and the role 

horizontal gene transfer may play in this.  

 

The future of studying the genetics of cooperation in bacteria 

Finally, I will now discuss two major outstanding questions for how we study cooperation in 

bacteria. First, how do we define a cooperative behaviour in bacteria, and how can we identify 

the genes which code for these behaviours? Second, how can comparative analyses across 

bacterial genomes improve our understanding of cooperation in bacteria, and how can potential 

issues of these analyses be resolved?  

 

What does it mean to be a cooperative gene? 

In Chapter 2, I explored where genes for cooperation were located in bacterial genomes. If we 

are to better understand the genetic basis of cooperation in bacteria, it is crucial that we can 

objectively define a cooperative gene. In general, a social behaviour is one which affects the 

fitness of an individual other than the actor. If the effect on another individual is positive, this 

is called a cooperative behaviour. Therefore, a cooperative gene is simply a gene which codes 

for a cooperative behaviour. Classic examples of cooperative behaviours in animals include 

sharing food, calling to warn of danger, and helping others to rear young.  

 

However, what constitutes a cooperative behaviour in bacteria can be more difficult to 

comprehend. Bacteria are so small and simple that most of their actions can simply be 

condensed down into whether they produce certain molecules. Consequently, a large portion 
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of the field of microbiology is concerned with profiling the metabolic capacities of different 

strains and species of bacteria, and looking for ways of utilising this for various applications.  

 

Similarly, cooperative behaviours in bacteria are often based upon the production of certain 

molecules. Instead of sharing food resources, bacteria produce enzymes to help break food 

down into smaller pieces (Allison 2005). Instead of calling to warn for danger, bacteria may 

produce signalling molecules upon their death to warn others against potential threats (LeRoux 

et al. 2015). Instead of helping others to rear young, bacteria secrete molecules that bind them 

together into biofilms, which may protect against external stresses and promote growth 

(Nocelli et al. 2016).  

 

While the costs of these behaviours are usually proportional to the energy required make the 

molecule, the benefits are more complex. In the simplest case, the producing cell would be the 

only individual to benefit from its production of the molecule. This is the case for most 

molecules which remain inside bacterial cells, with any effect on growth or survival often 

referred to as ‘private’. Therefore, this ‘private’ production would not be classed as 

cooperative, or indeed social, behaviours. Alternatively, others could benefit from an 

individual’s production, which would make the behaviour a cooperative one. This is often the 

case for extracellular molecules, since they may diffuse away from the producing cell. 

However, how the benefits to oneself and others are partitioned can be unclear. First, any 

benefit to others could simply be a by-product of benefits directed to oneself. In this case, we 

would not need to invoke social evolution theory to explain the evolution of this behaviour. 

Second, rather than being a by-product, the benefit to other cells could instead itself be under 

positive selection. Behaviours that are under such selection because of their effect on others 

are those which require social evolution theory to explain. 

 

Defining what constitutes a cooperative, and more generally a social, gene matters for how we 

ask questions about their evolution in bacteria. Due to the reasons discussed above, detailed 

experimental studies would be required to determine whether a candidate gene provides 

benefits to others, and is under selection because of its cooperative effect. However, it is usually 

unfeasible to achieve the same confidence in a cooperative effect when asking broad questions 

in comparative studies across species. Clearly, it would be inconceivable to have examined 

every gene in all 51 species for a potential cooperative effect on other cells, and then further 

consider how this effect on others compares to the effects on itself. Therefore, proxies of 
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cooperative genes are required if comparative genomics is to offer any insights into bacterial 

cooperation. In Chapter 2, we used the bioinformatics tool PSORTb to predict the subcellular 

location of the protein coded by each gene (Yu et al. 2010). Like previous studies, we defined 

a cooperative gene as any which coded for proteins that were secreted into the extracellular 

space (Nogueira et al. 2009).  

 

Using genes coding for extracellular proteins as a proxy for cooperative genes has some 

definite advantages. First, it removes any subjectivity when it comes to defining a cooperative 

gene; instead the program simply searches for signal peptides, which are highly conserved 

sequences that allow proteins to be properly packaged for secretion. Second, the high fidelity 

of signal peptide sequences across species means we can estimate which genes are cooperative, 

even if no experimental study has ever considered cooperation in that species. This increases 

the number of species able to be included in such studies, thus increasing the phylogenetic 

breadth for asking questions across bacteria. Third, it takes the program PSORTb 

approximately 40 minutes to predict the subcellular location of each of the 5000 genes on an 

Escherichia coli chromosome. This rapid pace again means many more genomes and species 

can be included, in contrast to if genes needed to be assessed as cooperative or not by hand. 

 

However, using such proxies also has some drawbacks. First, not all genes coding for 

extracellular proteins will necessarily be involved in bacterial cooperation. While many likely 

do act as some form of public good, some may simply be part of extracellular structures such 

as flagella, or instead tethered to the membrane by an additional protein. Second, even if genes 

do provide cooperative benefits, using this kind of proxy gives no information about how much 

of the benefits go to others compared to the producer. If a bacterium had evolved in a highly 

structured, viscous medium, many of the molecules it secreted could stay near to the producing 

cell. This would mean that much of the benefit would still be received by the producer. Third, 

there are many cooperative traits that could be missed by this type of proxy. This is because it 

only picks up secreted proteins, rather than all secreted molecules. Several well studied 

examples of cooperative molecules, such as iron-scavenging siderophores, are actually the 

product of multiple genes that work together inside the cell to produce the final siderophore 

product. This kind of molecule is referred to as a secondary metabolite. Therefore, while the 

proteins produced by such genes are intracellular, their function is to produce cooperative 

extracellular molecules. This means these kinds of cooperative genes are not classed as 

extracellular by the program PSORTb. 
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As new tools become available, our ability to identify cooperative genes will improve, both in 

speed and accuracy. A recent study by Simonet and McNally identified genes for cooperative 

public goods by using the program PANNZER, which annotates genes with predicted gene-

ontology terms based on signatures in their sequence, in addition to PSORTb (Koskinen et al. 

2015; Simonet & McNally 2021). The authors then searched these annotations for key gene-

ontology terms associated with cooperative behaviours, such as quorum sensing and antibiotic 

degradation, and labelled those with any positive matches as ‘cooperative’. This approach 

allowed for secondary metabolite genes to be included in the analyses, something not possible 

when using PSORTb alone.  

 

Additionally, the lead author of the Belcher et al. paper, which can be found in the appendix 

of this thesis, manually separated genes for certain behaviours into those conferring either 

public or private benefits, in genomes of the species Pseudomonas aeruginosa. This approach 

allowed the direct comparison of signatures of selection between genes that were expected to 

be under kin selection and those that were not, while controlling for potentially confounding 

effects of differential gene expression. Together, these two approaches emphasise that how 

cooperative genes are identified for analysis should depend on the scope and purpose of the 

study.  

 

Furthermore, the study of bacterial cooperation using experiments remains crucial to further 

understand how the benefits of behaviours are partitioned between the producer and any 

recipients. Experiments that identify whether behaviours are cooperative, and in what 

conditions these are selected for, would be particularly useful for bacterial species which have 

so far received less research attention in relation to their cooperative behaviours. These would 

help to inform and improve future attempts to identify the genes for cooperation in bacteria. 

 

Comparative genomics and evolutionary questions  

The techniques used in this thesis are a combination of genome bioinformatics and comparative 

analyses. Together, the term comparative genomics has been used to describe these types of 

studies.  

 

Comparative analyses across species have helped to shape the way we view much of 

evolutionary biology. For example, thanks to comparative studies, we now know that: (i) 
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cooperative breeding in birds is associated with low promiscuity; (ii) paternal care in fish may 

be due to sexual selection through female preference; (iii) inbreeding avoidance only evolves 

when there is a risk of both inbreeding depression and related mates encountering one another 

(Cornwallis et al. 2010; Goldberg et al. 2020; Pike et al. 2021). However, there are relatively 

few comparative studies on bacteria that aim to ask evolutionary questions. This is potentially 

because so much of the lifestyle and environments of bacteria are still relatively unknown to 

us, making them a difficult candidate for broad questions across species.  

 

While most of the comparative work on animals has focused on phenotypic traits, bacteria offer 

an opportunity to ask broad questions at the genotypic level. As of August 2021, there were 

24,761 complete bacterial genomes on the RefSeq/ NCBI public database. That is three times 

as many as the number of animal genomes, including those at all levels of completion. 

Therefore, the huge amount of genomic data currently available across bacterial species offers 

an opportunity to understand the evolution of cooperation at the genetic level, in a way not 

currently possible for animals.  

 

However, larger quantities of data come with increasing challenges in distinguishing artefacts 

from real biological effects. This is partly because many of the statistical techniques used most 

frequently in biology were designed for experimental studies, with expected sample sizes 

relatively low. As a result, large datasets comprising thousands of data points are more likely 

to produce arbitrary significant results when analysed using these statistical tests. This is not 

to say significant results in large datasets are always uninformative. Indeed, a large number of 

data points can be useful for distinguishing small but real effects that would otherwise not be 

picked up in a smaller-scale analysis.  

 

Instead, statistics on large datasets requires moving beyond considering p-values and 

significance alone; the size of the effect becomes just as important as the significance for these 

kind of analyses (Crawley 2014). With large enough datasets, statistical tests will almost 

always produce a significant result, unless the effect size is exactly zero (Sullivan & Feinn 

2012). This is not to say that datasets should be reduced in size to reduce the risk of false 

positives – quite the opposite. The ability of comparative analyses to draw conclusions across 

species relies on datasets that are large enough to sufficiently capture the diversity present in 

nature. Instead, when analysing a large dataset, a p-value of less than 0.05 should not be used 
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as a reason to conclude the presence of an effect, but should be treated as a ‘flag’ for where the 

size of the effect should be investigated, and robustness analyses conducted if necessary.  

 

Additionally, genomic datasets pose further problems. Most statistical tests assume that data 

points are independent from one another. As discussed throughout this thesis, this is clearly not 

the case for the genomes available in public databases. Thus, controlling for bacterial 

phylogeny and number of genomes per species using statistical techniques such as 

MCMCglmm is crucial for identifying whether a result is a real biological effect, or an artefact 

of a biased dataset. 

 

Perhaps more difficult to address is the problem that genomic databases are largely 

unrepresentative of bacteria as a whole. Currently, there are more than 10 times as many 

Escherichia coli genomes available than of the whole Cyanobacteria phylum, despite the latter 

being hugely diverse and found in almost every aquatic environment on Earth. This suggests 

that much of the distribution of genomes currently available is due to factors entirely different 

to distribution and prevalence on Earth. If entire clades of bacteria are missing from the original 

dataset, this limits our ability to draw broad conclusions across the bacterial domain. This 

should improve as sequencing becomes cheaper and more feasible for lesser-studied species. 

To accelerate this improvement, I suggest focusing sequencing efforts particularly on bacterial 

species currently underrepresented in genomic databases. In the meantime, I would emphasise 

the importance of careful consideration when compiling datasets for multi-species comparative 

genomics studies, and identifying and controlling for any biases present.  

 

In general, comparative genomics has the potential to give new and exciting insights into 

bacterial cooperation and evolution. It can help us test broad ideas and hypotheses across 

species, as I have done in this thesis. However, there are limitations of these kinds of analyses, 

and many factors that need to be considered and controlled for. Otherwise, there is the risk of 

overinterpreting results which may instead be artefacts of current genomic datasets.  
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Plasmids with higher mobility do not carry more genes for extracellular 

proteins. 

We found no difference in the proportion of genes coding for extracellular proteins across the 

three plasmid mobility types when we compared the means of each mobility type of each 

species (MCMCglmm; Table S2, row 12).  

 

We also found no significant difference when: (a) carrying out a regression between the 

proportion of genes coding for extracellular proteins and plasmid ‘mobility’ treated as a 

continuous variable (MCMCglmm; Table S2, row 13); (b) testing for a correlation between the 

proportion of a species’ plasmids which can transfer (are either conjugative or mobilizable) 

and the proportion of plasmid genes coding for extracellular proteins (Fig S5) (MCMCglmm; 

Table S2, rows 18 and 19); (c) testing for a correlation between the proportion of a species’ 

plasmids which can transfer and how overrepresented or underrepresented extracellular 

proteins are on plasmids compared to chromosomes (Extended Data Figure 4) (MCMCglmm; 

Table S2, rows 16 and 17). 

 

As discussed in the previous section, if non-independence is not controlled for, then there is 

the potential for misleading analyses and spurious significant results. This is especially a 

problem with analyses on large datasets. Consequently, it is important to examine biological 

effect sizes, and not just p-values1. For example, when we assumed that all 3522 plasmids, 

were independent data points, we found that 1.8% of conjugative plasmid genes code for 

extracellular proteins, compared to 1.4% of non-mobilizable plasmid genes. This means that 

for every 100 plasmid genes, conjugative plasmids carry less than half an additional 

extracellular protein-coding gene compared to non-mobilizable plasmids. Despite this 

marginal effect, a MCMCglmm model on this data produced significant pMCMC values for 

comparisons of the three plasmid mobility types, even though mobility only explains 1.5% of 

the variation in the proportion of genes coding for extracellular proteins (MCMCglmm; Table 

S2, rows 14 and 15). 

 

Transfer rates of conjugative, mobilizable and non-mobilizable plasmids. 

We have considered the relative rates of transfer among the three mobility types, where 

conjugative plasmids transfer at faster rates than mobilizable, and mobilizable transfer at faster 

rates than non-mobilizable2. However, the variation in transfer rates within plasmids of the 
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same mobility type is likely to be large, and mobilization via mechanisms other than 

conjugation, such as phage transfer, is possible2–5.  

 

Additionally, if mobilizable plasmids almost always co-occur with conjugative plasmids, they 

would transfer at a similar rate as conjugative plasmid(s), or potentially even faster if they were 

smaller and could replicate faster. We examined how frequently the mobilizable plasmids in 

our dataset co-occurred with conjugative plasmids. There were 727 genomes which carried at 

least one mobilizable plasmid, comprising 46 species. Of these, 40% (293/676) also carried a 

conjugative plasmid, while 60% (434/727) did not. This may be biased by a few species with 

a large number of genomes, so we also analysed the data at the species level to control for this. 

For each species, we grouped the genomes with mobilizable plasmids into those with and 

without a conjugative plasmid. We found that 37% of species (17/46) had a majority of 

genomes which also carried a conjugative plasmid, while 61% (28/46) of species had a majority 

of genomes which did not carry a conjugative plasmid. One species, Campylobacter coli, had 

only two genomes which carried a mobilizable plasmid, one of which carried a conjugative 

plasmid and the other did not. 

 

This suggests that mobilizable plasmids frequently, and potentially more often than not, occur 

without a conjugative plasmid. This frequent absence of transferability for mobilizable 

plasmids is likely to lead to a lower transfer rate compared to conjugative plasmids. This 

supports the use of ‘mobility type’ as a proxy for transfer rate, specifically that mobilizable 

plasmids will transfer at a lower rate than conjugative plasmids, on average. However, the 

variation in transfer rates within plasmids of the same mobility type is likely to be large, and 

mobilization via mechanisms other than conjugation, such as phage transfer, is possible2–5. 

Quantitative estimates of plasmid transfer rates would help to address these added 

complications6, and further examine any potential effect of plasmid mobility on the kinds of 

genes plasmids carry.  

 

Mobilizable plasmids do not code for more extracellular proteins when they 

co-occur with conjugative plasmids. 

We also examined whether mobilizable plasmids which co-occurred with conjugative plasmids 

had a greater % of genes that coded for extracellular proteins than those without a conjugative 

plasmid. This would be expected under the cooperation hypothesis, which suggests that 
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plasmid mobility is the key driver of whether a cooperative gene should be located on plasmids. 

We compared genomes with mobilizable plasmids within each species, considering only 

species which had at least one genome both with and without a conjugative plasmid. We found 

that for 43% (15/36) of species, mobilizable plasmids that co-occurred with a conjugative 

plasmid(s) had a greater % of genes coding for extracellular proteins than those without, while 

for 40% (14/36) of species, mobilizable plasmids that co-occurred with a conjugative 

plasmid(s) had a lower % of genes coding for extracellular than those without a conjugative 

plasmid. The remaining 17% (6/36) of species had no extracellular proteins on any of their 

mobilizable plasmids, and so the % for both was 0.  

 

We also analysed this data using a MCMCglmm analysis to control for phylogeny, and found 

that there was no significant difference between the proportion of genes coding for extracellular 

proteins for mobilizable plasmids that co-occurred with conjugative plasmid(s) compared to 

those that did not co-occur with conjugative plasmids (Table S2, Rows 38 & 39). This suggests 

that co-occurence with a conjugative plasmid has little impact on whether mobilizable plasmids 

carry genes for extracellular proteins. 

 

Number of environments. 

We used recently published data which assigned bacterial species to living in one or more of 

five broad environments: host, soil, sediment, wastewater and water7–9. Of species in our 

analysis, 36 had been assigned to at least one of these environments. We found no significant 

correlation between the number of environments a species was found in and how likely genes 

coding for extracellular proteins were to be on plasmids (Figure S9) (MCMCglmm; Table S2, 

row 34). We also found no significant correlation when we supplemented the published 

environmental data with information from the literature, so that all species in our dataset were 

included in the analysis (Extended Data Figure 6a; Supp X) (MCMCglmm; Table S2, row 35). 

 

Garcia-Garcera and Rocha (2020) found that the proportion of a species’ genome which coded 

for extracellular proteins increased with the number of environments a species was found in8. 

This is a slightly different, but related question. When we asked the same question with our 

data, we found a non-significant pattern, but in the same direction: the number of five broad 

environments in which each species was found was positively correlated with the proportion 

of genes coding for extracellular proteins across the genome increased (Fig S10) 
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(MCMCglmm; Table S2, row 36). Garcia-Garcera and Rocha analysed data for over 1000 

bacterial species, and so had greater statistical power to obtain a significant result. They also 

used MCMCglmm to control for phylogeny. In addition, this relationship could be relatively 

weak because the five environments are very broad and there is likely to be significant 

variability within these environments.  

 

Core vs accessory genes. 

Bacterial genes are often split up into ‘core’ genes, found in all genomes of a species, and 

‘accessory’ genes, found in only a subset of a species’ genomes10. Species which encounter 

more variable environments are expected to have relatively more accessory genes compared to 

core genes in their genomes11. Consequently, the proportion of each species’ genomes 

composed of ‘core’ genes could be used as a proxy of environmental variability, by assuming 

that species which encounter more variable environments will have a smaller proportion of 

core genes. We used data from PanX12 to calculate the proportion of each species’ genomes 

which were core. We found no significant correlation between the proportion of each species’ 

genomes which are core genes and the likelihood that genes coding for extracellular proteins 

are on plasmids (Extneded Data Figure 6b) (MCMCglmm; Table S2, row 37).  

 

Effect sizes, variance explained and significance. 

The percentage of variance explained that is considered biologically significant is subjective 

and can depend upon the kind of data you are examining, and the field of research. In many 

areas of evolution and ecology, 5-10% can be a reasonable baseline, but in some areas 1% 

could be argued for1,13. For example, when including all analyses both significant and non-

significant in the field of behavioural ecology, the average variance explained is approximately 

4%, and so a value greater than 4% would be above background noise14. In particularly 

successful areas, such as the field of sex allocation, where a relatively good fit between theory 

and data can be expected, the percentage variance explained can average 28% across studies 

within species, and be as high as 93%15,16.  
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Table S1. Summary of location of genes encoding each subcellular localisation across species.  

For schematic of these localisations see Figure S1. Cytoplasmic, cytoplasmic membrane and extracellular protein values are the mean number per 

genome calculated across all genomes of a species, and then the means across all species. Periplasmic and outer membrane values are the mean 

calculated across only Gram-negative species, while cell wall values are the mean calculated across only Gram-positive species. Percentages are 

out of all genes with a known localisation, except for unknown protein percentages which are of all proteins.  
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Table S2. MCMCglmm analyses 
We ran all MCMCglmm models with uninformative priors (V=1, nu=0.002). 

Note: Unless otherwise stated, we arcsine square root transformed all proportion data. 

 
  

Model description 

 

Sample size 

 

Posterior mean 

95% Credible 

Interval 

 

pMCMC 

R2 value (if 

calculated) 

Location of extracellular proteins within bacterial genomes 

1a Difference in plasmid and chromosome 

extracellular proportions ~ 1. 

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes 0.004 -0.063 to 0.057 0.87 (NS) Phylogeny = 0.17. 

Number of 

genomes per 

species = 0.47 

1b Difference in plasmid and chromosome 

extracellular proportions ~ 1. 

Random effects: number of genomes per 

species. 

1632 genomes 0.007 -0.021 to 0.034 0.644 (NS)  

2 Ratio of plasmid and chromosome extracellular 

proportions ~ 1. 

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes 1.017 0.695 to 1.348 N/A (1 is within 95% CI, 

so ratio is not 

significantly different to 

1). 

 

3 Each genome assigned 1 if plasmid > 

chromosome proportion, and 0 if plasmid < 

chromosome proportion. 

1632 genomes 17.82 -69.90 to 128.97 0.558 (NS)  
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Model uses categorical family response 

variable. Assigned value ~ 1. (This asks 

whether more 0s or 1s in the data).  

Random effects: phylogeny + number of 

genomes per species. 

4 Difference in plasmid and chromosome 

extracellular proportions ~ 1. Proportion data 

un-transformed before calculating difference. 

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes 0.017 -0.021 to 0.057 0.332 Phylogeny = 0.34. 

Number of 

genomes per 

species = 0.46. 

Location of other protein classes within bacterial genomes 

5 Difference in plasmid and chromosome 

cytoplasmic proportions ~ 1. 

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes 0.090 -0.008 to 0.209 0.074 (NS)  

6 Difference in plasmid and chromosome 

cytoplasmic membrane proportions ~ 1. 

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes -0.129 -0.295 to 0.012 0.088 (NS)  

7 Difference in plasmid and chromosome 

periplasmic proportions ~ 1. 

Random effects: phylogeny + number of 

genomes per species. 

1027 genomes (only 

Gram-negative 

species) 

-0.048 -0.183 to 0.127 0.482 (NS)  
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8 Difference in plasmid and chromosome outer 

membrane proportions ~ 1. 

Random effects: phylogeny + number of 

genomes per species. 

1027 genomes (only 

Gram-negative 

species) 

-0.075 -0.192 to 0.040 0.158 (NS)  

9 Difference in plasmid and chromosome cell 

wall proportions ~ 1. 

Random effects: phylogeny + number of 

genomes per species. 

605 genomes (only 

Gram-positive  

species) 

-0.028 -0.120 to 0.052 0.418 (NS)  

10 Difference in plasmid and chromosome 

unknown localisation proportions ~ 1. 

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes 0.156 0.089 to 0.224 0.002 (**)  

Plasmid mobility and extracellular proteins 

11 Slope value of mean plasmid extracellular 

proportion vs mobility ~ 1.  

Random effect: phylogeny.  

40 slopes (one for 

each species with all 

three plasmid 

mobilities) 

0.006 -0.040 to 0.052 0.73 (NS) Phylogeny =  0.33. 

12 Mean plasmid extracellular proportion ~ 

plasmid mobility. (Mobility as a factor with 

three levels) 

Random effect = phylogeny. 

138 (mean for each 

plasmid mobility, so 

most species (40) 

have three data 

points) 

Conjugative compared to 

non-mobilizable = 0.013.  

Mobilizable compared to 

non-mobilizable = -0.019. 

Conjugative compared to 

non-mobilizable = -0.023 

to 0.055.  

Mobilizable compared to 

non-mobilizable = -0.060 

to 0.016. 

Conjugative compared to 

non-mobilizable = 0.514 

(NS). 

Mobilizable compared to 

non-mobilizable = 0.354 

(NS). 

 

13 Mean plasmid extracellular proportion ~ 

plasmid mobility. (Here, non-mobiilzable = 1, 

138 (mean for each 

plasmid mobility, so 

Intercept = 0.098.  

Slope = 0.006. 

Intercept = 0.001 to 0.183.  

Slope = -0.012 to 0.028. 

Intercept = 0.042 (*) 

Slope = 0.546 (NS) 
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mobilizable = 2, conjugative = 3, so mobility is 

numeric and model is a regression).  

 

most species (40) 

have three data 

points) 

14 Plasmid extracellular proportion ~ plasmid 

mobility. (Mobility as a factor with three 

levels) 

Random effects = phylogeny + number of 

plasmids per species. 

3522 (one for each 

plasmid with a 

mobility prediction) 

Conjugative compared to 

non-mobilizable = 0.015. 

Mobilizable compared to 

non-mobilizable = -0.033. 

Conjugative compared to 

non-mobilizable = 0.004 to 

0.026.  

Mobilizable compared to 

non-mobilizable = -0.044 

to -0.023. 

Conjugative compared to 

non-mobilizable = 0.008 

(**). 

Mobilizable compared to 

non-mobilizable = 

<0.001 (***). 

Plasmid mobility = 

0.015. 

Phylogeny = 0.13. 

Number of 

plasmids per 

species = 0.29.  

15 Plasmid extracellular proportion ~ plasmid 

mobility. (Here, non-mobiilzable = 1, 

mobilizable = 2, conjugative = 3, so mobility is 

numeric and model is a regression). 

3522 (one for each 

plasmid with a 

mobility prediction) 

Intercept = 0.102. 

Slope = 0.006. 

Intercept = 0.046 to 0.170. 

Slope = -0.0002 to 0.011.  

Intercept = 0.008 (**) 

Slope = 0.056 (NS). 

 

16 Mean difference in plasmid and chromosome 

extracellular proportions ~ mean proportion of 

plasmids which are conjugative. 

Random effect = phylogeny. 

51 (mean difference 

and conjugative 

proportion for each 

species) 

Intercept = -0.0003. 

Slope = -0.001. 

Intercept = -0.075 to 

0.076. 

Slope = -0.084 to 0.064. 

Intercept = 0.996 (NS). 

Slope = 0.988 (NS). 

 

17 Mean difference in plasmid and chromosome 

extracellular proportions ~ mean proportion of 

plasmids which are conjugative or mobilizable. 

Random effect = phylogeny. 

51 (mean difference 

and conjugative/ 

mobilizable 

proportion for each 

species) 

Intercept = -0.016. 

Slope = 0.017. 

Intercept = -0.125 to 

0.079. 

Slope = -0.076 to 0.101. 

Intercept = 0.78 (NS). 

Slope = 0.668 (NS). 

 

18 Mean plasmid extracellular proportion ~ mean 

proportion of plasmids which are conjugative.  

Random effect = phylogeny. 

51 (mean 

extracellular 

proportion and 

Intercept = 0.133.  

Slope = -0.006. 

Intercept = 0.061 to 0.205. 

Slope = -0.087 to 0.065. 

Intercept = 0.008 (**). 

Slope = 0.91 (NS). 
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conjugative 

proportion for each 

species) 

19 Mean plasmid extracellular proportion ~ mean 

proportion of plasmids which are conjugative 

or mobilizable.  

Random effect = phylogeny. 

51 (mean 

extracellular 

proportion and 

conjugative/ 

mobilizable 

proportion for each 

species) 

Intercept = 0.109. 

Slope = 0.024. 

Intercept = 0.004 to 0.221. 

Slope = -0.069 to 0.109. 

Intercept = 0.05 (*). 

Slope = 0.578 (NS). 

 

20 Mean difference in non-mobilizable plasmid 

and chromosome extracellular proportions ~ 1. 

Random effect = phylogeny. 

48 (mean difference 

for each species, 3 

species had no 

genomes with a non-

mobilizable 

plasmid(s)) 

0.016  -0.085 to 0.054 0.638 (NS)  

21 Mean difference in conjugative/mobilizable 

plasmid and chromosome extracellular 

proportions ~ 1. 

Random effect = phylogeny. 

48 (mean difference 

for each species, 3 

species had no 

genomes with a 

mobilizable/ 

conjugative 

plasmid(s)) 

-0.041 -0.117 to 0.051 0.292 (NS)  

22 Mean difference in conjugative plasmid and 

chromosome extracellular proportions ~ 1. 

44 (mean difference 

for each species, 7 

0.004 

 

-0.078 to 0.102 0.924 (NS)  
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Random effect = phylogeny. species had no 

genomes with a 

conjugative 

plasmid(s)) 

 

Host-range of pathogens 

23 Difference in plasmid and chromosome 

extracellular proportions ~ pathogenicity/host 

range (factor with three levels: non-pathogen, 

narrow host-range pathogen, and broad host-

range pathogen).  

Random effects: phylogeny + number of 

genomes per species. 

701 genomes (all 

genomes from 25 

species) 

Non-pathogen compared to 

broad host-range pathogen 

= -0.161. 

Narrow host-range 

pathogen compared to 

broad host-range pathogen 

= -0.222.  

Non-pathogen compared to 

broad host-range pathogen 

= -0.252 to -0.067.  

Narrow host-range 

pathogen compared to 

broad host-range pathogen 

= -0.322 to -0.123.  

Non-pathogen compared 

to broad host-range 

pathogen = <0.001 (***). 

Narrow host-range 

pathogen compared to 

broad host-range 

pathogen = <0.001 (***) 

Pathogenicity/ host-

range = 0.35. 

Phylogeny = 0.11. 

Number of 

genomes per 

species = 0.28. 

24 Difference in plasmid and chromosome 

extracellular proportions ~ pathogenicity 

(factor with two levels: non-pathogen and 

pathogen).  

Random effects: phylogeny + number of 

genomes per species. 

701 genomes (all 

genomes from 25 

species) 

Pathogen compared to 

non-pathogen = 0.106. 

Pathogen compared to 

non-pathogen = -0.22 to 

0.218. 

Pathogen compared to 

non-pathogen = 0.092 

(NS) 

 

25 Difference in plasmid and chromosome 

extracellular proportions ~ pathogenicity/host-

range (factor with two levels: non-pathogen and 

narrow host-range pathogen).  

 

389 genomes (all 

genomes from 15 

species) 

Non-pathogen compared to 

narrow host-range 

pathogen = 0.031. 

Non-pathogen compared to 

narrow host-range 

pathogen = -0.065 to 

0.127. 

Non-pathogen compared 

to narrow host-range 

pathogen = 0.482 (NS). 

 

Pathogenicity of extracellular proteins 
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26 Difference in plasmid and chromosome 

pathogenic extracellular proportions ~ host 

range. Only in broad and narrow host-range 

pathogens.  

Random effects: phylogeny + number of 

genomes per species. 

474 genomes 

(genomes from 15 

species) 

Narrow host-range 

compared to broad host-

range = -0.209. 

Narrow host-range 

compared to broad host-

range = -0.350 to -0.086. 

Narrow host-range 

compared to broad host-

range = 0.012 (*). 

 

27 Difference in plasmid and chromosome non-

pathogenic extracellular proportions ~ host-

range. Only in broad and narrow host-range 

pathogens.  

Random effects: phylogeny + number of 

genomes per species. 

474 genomes 

(genomes from 15 

species) 

Narrow host-range 

compared to broad host-

range = -0.034. 

Narrow host-range 

compared to broad host-

range = -0.108 to 0.035. 

Narrow host-range 

compared to broad host-

range = 0.296 (NS). 

 

28 Difference in plasmid and chromosome 

pathogenic extracellular proportions ~ human 

pathogenicity (factor with two levels: human or 

non-human). Only in broad and narrow host-

range pathogens. 

474 genomes 

(genomes from 15 

species) 

Non-human compared to 

human = 0.012. 

Non-human compared to 

human = -0.156 to 0.187. 

Non-human compared to 

human = 0.838 (NS). 

 

29 Difference in plasmid and chromosome non-

pathogenic extracellular proportions ~ human 

pathogenicity. Only in broad and narrow host-

range pathogens. 

474 genomes 

(genomes from 15 

species) 

Non-human compared to 

human = -0.008. 

Non-human compared to 

human = -0.074 to 0.059. 

Non-human compared to 

human = 0.812 (NS). 

 

30 Difference in plasmid and chromosome 

pathogenic extracellular proportions ~ host-

range + human pathogenicity. Only in broad 

and narrow host-range pathogens. 

474 genomes 

(genomes from 15 

species) 

Host-range = -0.212. 

Human pathogenicity  

= -0.021. 

 

Host-range = -0.366 to  

-0.77. 

Human pathogenicity =  

-0.157 to 0.105. 

Host-range = 0.012 (*). 

Human pathogenicity = 

0.740 (NS). 
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Pathogenic extracellular proteins and plasmid mobility 

31 Slope value of mean plasmid pathogenic 

extracellular proportion vs mobility ~ 1. Only 

broad host-range pathogens with plasmids of all 

three moiblities). 

Random effect: phylogeny. 

 

7 (a slope for each 

broad host-range 

pathogen species with 

plasmids of all three 

mobilities) 

-0.020  -0.224 to 0.185 0.774 (NS)  

32 Mean plasmid pathogenic extracellular 

proportion ~ plasmid mobility. (Mobility as a 

factor with three levels) All broad host-range 

pathogen species. 

Random effect: phylogeny. 

26 (mean for each 

plasmid mobility; 

seven have 3 data 

points, three have 1 

or 2). 

Mobilizable compared to 

non-mobilizable = 0.0001. 

Conjugative compared to 

non-mobilizable = -0.049. 

Mobilizable compared to 

non-mobilizable = -0.179 

to 0.139. 

Conjugative compared to 

non-mobilizable = -0.212 

to 0.099. 

Mobilizable compared to 

non-mobilizable = 0.974. 

(NS) 

Conjugative compared to 

non-mobilizable = 0.528 

(NS). 

 

33 Mean plasmid pathogenic extracellular 

proportion ~ plasmid mobility. (Mobility as a 

factor with three levels) All narrow host-range 

pathogen species. 

Random effect: phylogeny. 

 

11 (mean for each 

plasmid mobility; two 

have 3 data points, 

three have 1 or 2). 

Mobilizable compared to 

non-mobilizable = 0.003. 

Conjugative compared to 

non-mobilizable = 0.121. 

Mobilizable compared to 

non-mobilizable = -0.128 

to 0.118. 

Conjugative compared to 

non-mobilizable = -0.020 

to 0.260. 

 

Mobilizable compared to 

non-mobilizable = 0.972 

(NS). 

Conjugative compared to 

non-mobilizable = 0.076 

(NS). 

 

Number of five broad environments 

34 Difference in plasmid and chromosome 

extracellular proportions ~ number of 

environments.  

1360 genomes (all 

genomes from 36 

species with data on 

Intercept = -0.026. 

Slope = 0.013. 

Intercept = -0.098 to 

0.057. 

Slope = -0.015 to 0.042. 

Intercept = 0.498 (NS). 

Slope = 0.350 (NS). 
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Random effects: phylogeny + number of 

genomes per species. 

number of 

environments) 

35 Difference in plasmid and chromosome 

extracellular proportions ~ number of 

environments (supplemented with literature).  

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes Intercept = 0.017. 

Slope = -0.006. 

Intercept = -0.055 to 

0.115. 

Slope = -0.036 to 0.016. 

Intercept = 0.562 (NS). 

Slope = 0.492 (NS). 

 

36 Genome extracellular proportion ~ number of 

environments (supplemented with literature).  

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes Intercept = 0.138.  

Slope = 0.001. 

Intercept = 0.102 to 0.181. 

Slope = -0.004 to 0.007. 

Intercept = <0.001 (***). 

Slope = 0.596 (NS). 

 

Core vs accessory genome 

37 Difference in plasmid and chromosome 

extracellular proportion ~ core gene proportion. 

Random effects: phylogeny + number of 

genomes per species. 

1632 genomes Intercept = -0.075. 

Slope = -0.084. 

Intercept = -0.041 to 

0.205. 

Slope = -0.218 to 0.034. 

Intercept = 0.228 (NS). 

Slope = 0.170 (NS). 

 

Gene content of mobilizable plasmids present with and without conjugative plasmids 

38 Proportion of genes coding extracellular 

proteins for mobilizable plasmid(s) in genome 

~ whether conjugative plasmid also present in 

genome.  

Random effects: phylogeny. 

46 species (those 

which had >= 1 

genome with a 

mobilizable plasmid) 

Without conjugative 

compared to conjugative = 

0.002. 

Without conjugative 

compared to conjugative = 

-0.032 to 0.038. 

Without conjugative 

compared to conjugative 

= 0.912 (NS). 

 

39 Mean difference in extracellular proportion of 

mobilizable plasmids for genomes with vs 

without conjugative plasmids ~ 1.  

35 species (those 

which had >=1 

genome with a 

Intercept = 0.003. Intercept = -0.066 to 

0.061. 

Intercept = 0.922 (NS).  
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Random effects: phylogeny. mobilizable plasmid 

both with and without 

a conjugative 

plasmid. 

 
 

Table S3. Measures of Bacterial Lifestyle and Environmental Variability 

Below is a table of literature references used to categorise species’: (i) pathogenicity; (ii) host-range (if pathogenic and not opportunistic/other); 

(iii) presence in five broad environments.  

 
Species  Gram-

stain 

Pathogenicity Host-

range 

Environments (original Garcia-

Garcera & Rocha1 data) 

Environments (supplemented with 

literature) 

Literature 

references 

Acinetobacter baumannii Negative Opportunistic/  other  Water, wastewater, soil,  host Water, wastewater, sediment, soil,  host 2–5 

Acinetobacter pittii Negative Opportunistic/  other   Water, wastewater, sediment, soil,  host 5,6 

Bacillus anthracis Positive Pathogen Broad Water, soil Water, soil, host 7,8 

Bacillus cereus Positive Opportunistic/ other  Water, wastewater, soil Water, wastewater, soil, host 9,10 

Bacillus subtilis Positive Non-pathogen  Soil, host Soil, host 11,12 

Bacillus thuringiensis Positive Pathogen Broad Water, soil Water, soil, host 13,14 

Bacillus velezensis Positive Non-pathogen   Water, soil, host 15,16 

Buchnera aphidicola Negative Non-pathogen   Host 17 

Campylobacter coli Negative Opportunistic/ other  Host Host 18 

Campylobacter jejuni Negative Opportunistic/ other  Host Host 18 

Chlamydia psittaci Negative Pathogen Broad Host, sediment Host 19,20 

Chlamydia trachomatis Negative Pathogen Narrow Host, sediment Host 21,22 
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Citrobacter freundii Negative Opportunistic/ other   Water, wastewater, sediment, soil,  host 23 

Clostridium botulinum Positive Opportunistic/ other  Water, wastewater, sediment, soil,  host Water, wastewater, sediment, soil,  host 24,25 

Enterobacter cloacae Negative Opportunistic/ other  Host Water, wastewater, sediment, soil,  host 26,27 

Enterobacter hormaechei Negative Opportunistic/ other   Water, wastewater, sediment, soil,  host 27,28 

Enterococcus faecalis Positive Opportunistic/ other  Host Host 29 

Enterococcus faecium Positive Opportunistic/ other  Host Host 29 

Escherichia coli Negative Opportunistic/ other  Water, wastewater, soil, host Water, wastewater, soil, host 30,31 

Helicobacter pylori Negative Pathogen Narrow  Host 32,33 

Klebsiella aerogenes Negative Opportunistic/ other  Soil, host Soil, host 27,34 

Klebsiella oxytoca Negative Opportunistic/ other   Water, wastewater, soil, host 35 

Klebsiella pneumoniae Negative Opportunistic/ other  Soil, host Water, wastewater, soil, host 35 

Lactobacillus brevis Positive Non-pathogen  Host Host, wastewater 36,37 

Lactobacillus paracasei Positive Non-pathogen  Host Host, wastewater 37 

Lactobacillus plantarum Positive Non-pathogen  Soil, Host Soil, host, wastewater 37 

Lactobacillus sakei Positive Non-pathogen  Host Host, wastewater 37 

Lactococcus lactis Positive Opportunistic/ other  Host Host 38,39 

Legionella pneumophila Negative Opportunistic/ other  Water, sediment, soil Water, sediment, soil, host 40,41 

Leuconostoc 

mesenteroides 

Positive Opportunistic/ other  Host Host 42 

Listeria monocytogenes Positive Opportunistic/ other  Wastewater, soil Wastewater, soil, host 43 

Neisseria gonorrhoeae Negative Pathogen Narrow Host Host 44 

Phaeobacter inhibens Negative Opportunistic/ other   Host, water 45 

Piscirickettsia salmonis Negative Pathogen Narrow  Host 46 

Proteus mirabilis Negative Opportunistic/ other  Host Water, wastewater, soil, host 47 
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Pseudomonas aeruginosa Negative Opportunistic/ other  Water, wastewater, soil Water, wastewater, sediment, soil, host 48,49 

Pseudomonas syringae Negative Pathogen Broad Water, soil, host Water, soil, host 50–52 

Ralstonia solanacearum Negative Pathogen Broad Water, soil Water, wastewater, soil, host 53,54 

Rhizobium 

leguminosarum 

Negative Non-pathogen  Soil Soil, host 55 

Rhizobium phaseoli Negative Non-pathogen   Soil, host 56 

Salmonella enterica Negative Pathogen Broad Host Host, wastewater 57 

Serratia marcescens Negative Opportunistic/ other   Water, wastewater, sediment, soil, host 58,59 

Sinorhizobium meliloti Negative Non-pathogen  Soil, host Soil, host 60 

Staphylococcus aureus Positive Opportunistic/ other  Sediment, host Host 61,62 

Staphylococcus 

epidermidis 

Positive Opportunistic/ other  Soil, host Host 63 

Vibrio parahaemolyticus Negative Opportunistic/ other   Water, host 64 

Xanthomonas citri Negative Pathogen Narrow Soil, host Soil, host 65–67 

Xylella fastidiosa Negative Pathogen Broad Water, sediment, soil Water, sediment, soil, host 68 

Yersinia enterocolitica Negative Pathogen Broad  Water, wastewater, soil, host 69,70 

Yersinia pestis Negative Pathogen Broad  Host, soil 71 

Yersinia 

pseudotuberculosis 

Negative Pathogen Broad  Host, soil 72,73 
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Figure S1. Phylogeny of all 51 species in our dataset. 

Based on published 16S RNA maximum likelihood tree67 and supplemented with additional 

published trees from the literature. Class is indicated by colour and corresponding labels.  
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Fig S2. Proportion of proteins predicted as extracellular for plasmids and chromosomes. 

Each species has two proportions: the blue dot is the mean proportion of plasmid proteins 

predicted by PSORTb to be extracellular across all plasmids in that species, while the red dot 

is the mean proportion of plasmid proteins predicted to be extracellular across all chromosomes 
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in that species. It is clear that these proportions vary substantially across species, and this is 

particularly true for plasmids. Proportion data is arcsine square root transformed.  

 

 

 

 

Fig S3. Extracellular proteins are not consistently overrepresented on plasmids of all 

three mobilities (non-mobilizable, mobilizable, conjugative)  

The graphs are identical to Figure 3, but with only certain plasmids included in each. The left-

hand graph shows the difference between chromosome and non-mobilizable plasmid 

proportion of genes encoding extracellular proteins. The middle graph shows the same 

difference but for conjugative and mobilizable plasmids together. The right-hand graph shows 

the difference with only conjugative plasmids. 
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Figure S4. No difference in the mean % of genes coding for extracellular proteins across 

the three mobility types. 

Dots indicate the mean % of genes coding for extracellular proteins of all plasmids of each 

mobility level for each species. All species data points are shown, including those which do 

not carry plasmids of all three mobility levels. Red bars indicate the mean across species for 

each mobility level. 
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Figure S5. No effect of a species’ plasmid mobility and % plasmid genes coding for 

extracellular proteins. 

Dots indicate the mean for each species. The x-axis is the % of a species’ plasmids which are 

conjugative/ mobilizable, and the y-axis indicates the % of a species’ plasmid genes which 

code for extracellular proteins. There is no significant correlation (S3; Table S2, row 19). 

 

 

 

 

 

 

●●

●

● ●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●●

●

●

●

● ● ●

●●

●
●

●

●

●●

●

● ●
●

●

●●

●

●

●

●

0

5

10

15

20

0 25 50 75 100
% of plasmids which are conjugative 

and/or mobilizable

% plasmid genes 
encoding 

extracellular 
proteins



S3 

  161 

 

Figure S6. Co-occurrence of mobilizable plasmids with conjugative plasmids.  

Each panel shows data for one of the 46 species which had at least one genome with at least 

one mobilizable plasmid. Each dot corresponds to a genome which had at least one mobilizable 
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plasmid. The y-axis shows the % of genes coding for extracellular proteins for each genomes’ 

mobilizable plasmid(s). In the cases where two or more mobilizable plasmids were in the same 

genome, we calculated their mean % and plotted this, so that each genome is only plotted once. 

Genomes which also carry a conjugative plasmid are plotted on the left of each panel, and 

coloured red. Genomes which do not carry a conjugative plasmid are on the right of each panel, 

and coloured green. The black bars indicate the mean of each of these two categories. Overall, 

species are highly variable in both the number of genomes with mobilizable plasmids that co-

occur with conjugative plasmids, and the % of genes that code for extracellular proteins of their 

mobilizable plasmids. It is clear that, across species, the means of red dots are not consistently 

greater than the means of blue dots with respect to the y-axis. 
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Fig S7. Pathogenic extracellular proteins are not more likely to be carried by higher 

mobility plasmids in broad host-range pathogen species. 

Each panel shows data for one of the 7 broad host-range pathogen species which carried 

plasmids of all three mobilities. Dots in each panel indicate the mean % of genes coding for 

pathogenic extracellular proteins of all plasmids of each mobility level. The blue lines are the 

linear regression of these three points. Overall, there is no consistent trend for genes that code 

for extracellular proteins to be on more mobile plasmids. 
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Figure S8. Pathogenic extracellular proteins are not more likely to be carried by more 

mobile plasmids in both broad and narrow host-range pathogen species 

Dots indicate the mean % of genes coding for extracellular proteins of all plasmids of each 

mobility level for each species. All pathogen species data points are shown, including those 

which do not carry plasmids of all three mobility levels. Red bars indicate the mean across 

species for each mobility level. 
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Figure S9. No significant correlation between the number of five broad environments a 

species is found in and how overrepresented or underrepresented extracellular proteins 

are on plasmids. 

The x-axis shows the original published data of the number of five broad environments a 

species is found in, with 36 of the species in our dataset represented in the dataset. The y-axis 

shows the difference in the proportion of genes on plasmids and chromosomes coding for 

extracellular proteins. Each dot is the mean for all genomes in a species. Species in blue are 

those with extracellular proteins overrepresented on plasmids, while species in red are those 

with extracellular proteins overrepresented on chromosomes. 
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Figure S10. Positive but non-significant correlation between the number of five broad 

environments a species is found in and the proportion of the genome which encodes 

extracellular proteins. 

The x-axis shows the original published data of the number of five broad environments a 

species is found in, with 36 of the species in our dataset represented in the dataset. The y-axis 

shows the proportion of all genes in the genome which code for extracellular proteins. The blue 

line is the linear regression. 
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Abstract  
Bacteria produce a range of molecules that are secreted from the cell, and can provide a benefit 

to the local population of cells. Laboratory experiments have suggested that these ‘public 

goods’ molecules represent a form of cooperation, favoured because they benefit closely 

related cells (kin selection). However, there is a relative lack of data demonstrating kin 

selection for cooperation in natural populations of bacteria. We used molecular population 

genetics to test for signatures of kin selection at the genomic level, in natural populations of 

the opportunistic pathogen Pseudomonas aeruginosa. We found consistent evidence from 

multiple traits that genes controlling putatively cooperative traits have higher polymorphism, 

greater divergence, and are more likely to harbour deleterious mutations relative to genes 

controlling putatively private traits which are expressed at similar rates. We estimate that the 

relatedness for social interactions in P. aeruginosa is r = 0.84. Our results suggest that 

cooperation has been favoured by kin selection, demonstrating how molecular population 

genetics can be used to study the evolution of cooperation in natural populations. 

 
 
 
 
Significance statement 
Bacteria secrete many molecules outside the cell, where they provide benefits to other cells. 

One potential reason for producing these ‘public goods’ is that they benefit closely related cells 

who share the gene for cooperation (kin selection). While many laboratory studies have 

supported this hypothesis, there is a lack of evidence that kin selection favours cooperation in 

natural populations. We examined bacterial genomes from the environment and used 

population genetics theory to analyse the DNA sequences. Our analyses suggest that public 

goods cooperation has indeed been favoured by kin selection in natural populations. 
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Introduction 
The growth and success of many bacteria appears to depend upon a stunning array of 

cooperative behaviours (1–3). Cells produce and secrete a range of factors that benefit the local 

group of cells, and so act as cooperative ‘public goods’. Examples include molecules to 

scavenge iron (siderophores) (4), enzymes that break down proteins (proteases) (5) and 

molecules to aid cell movement (rhamnolipids) (6). 

 

The potential problem with such cooperation is that it can be exploited by non-cooperators 

(‘cheats’) who do not produce public goods, but can still benefit from those produced by others 

(7). A likely solution to this problem in bacteria is that clonal growth keeps close relatives 

together, and limited diffusion keeps public goods close to producers (8). Consequently, the 

benefits of cooperation tend to be shared with related cells that share the gene for cooperation, 

and so cooperation is favoured by kin selection (9). 

 

However, most evidence for cooperation and kin selection in bacteria has come from laboratory 

experiments (10–18). To what extent are test tube cultures, often utilising extreme gene 

knockouts, representative of natural populations? (1, 12). A problem here is that while bacteria 

and other microorganisms offer many advantages for laboratory experiments, they can be very 

difficult to study in their natural environment. 

 

Population genetics offers a way to study natural populations, because kin selection can leave 

signatures (‘footprints’) of selection at the genomic level (10–12, 15, 19–28).  In a clonal 

population, where the relatedness (r) between interacting cells is r=1, the benefits of 

cooperating will always be passed onto other individuals who carry the gene for cooperation. 

In contrast, as relatedness decreases (r<1), the benefits of cooperation will increasingly be 

passed onto individuals who do not carry the gene for cooperation (Figure 1a). This reduces 

(dilutes) the kin selected benefit of cooperation, making beneficial mutations less likely to fix, 

and deleterious mutations more likely to fix (Figure 1b) (9, 25). 

 

Population genetic theory therefore predicts that, in non-clonal populations (r<1), cooperative 

traits favoured by kin selection will show increased polymorphism and divergence relative to 

traits that provide private benefits (Figure 1c & d). Non-clonal populations appear to be very 

common in bacteria. At the scale of the social interaction, groups often contain multiple 
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species, let alone multiple lineages of the same species (17, 29, 30). In addition, molecular and 

genomic studies have demonstrated selection for non-cooperative cheats, that exploit the 

cooperation of others, as well as a diversity of mechanisms for attacking nonrelatives (14, 16, 

31). Clonal interactions seem to be limited to extreme cases such as cyanobacteria filaments 

(30). 

  

We tested for genomic signatures of kin selection for cooperation in the opportunistic pathogen 

Pseudomonas aeruginosa. Laboratory experiments have suggested that P. aeruginosa 

produces a range of cooperative public goods, that facilitate both growth and virulence (4, 32, 

33). A potential problem with genomic analyses is that they can be confounded by conditional 

gene expression. If a gene is only occasionally expressed, in certain conditions, this can also 

lead to relaxed selection, making beneficial mutations less likely to fix and deleterious 

mutations more likely to fix (10, 22). We controlled for this influence of conditional gene 

expression by making targeted comparisons between cooperative and private traits that are 

likely to be expressed at similar rates. 
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Figure 1: Population genetic theory for cooperative traits. (A) Representation of how traits are 
categorized as private or cooperative. Cooperative traits are those involving the production and 
secretion of molecules where the fitness benefits can potentially be shared with other cells in the local 
group. Private traits are those where the fitness benefits are only felt by the individual expressing the 
gene (e.g. internal metabolism). B) Probability of fixation for deleterious or beneficial mutations of 
varying effect (x-axis) for mutations influencing private (black line) and cooperative (social) (all 
lines) traits. In clonal populations, where the relatedness (r) between interacting individuals r=1, the 
prediction is the same for mutations influencing private and cooperative traits (black line). As 
relatedness decreases, the prediction changes for mutations influencing cooperation, with beneficial 
mutations become less likely to fix, and deleterious mutations more likely to fix. Consequently, in 
non-clonal populations, there is relaxed selection on genes controlling cooperative traits relative to 
those controlling private traits. Adapted from van Dyken & Wade 2010. (C) Prediction for relative 
polymorphism and divergence for cooperative (blue) relative to private (yellow) genes assuming a 
fixed r<1. Due to the increased fixation likelihood of deleterious mutations, and decreased fixation 
likelihood of beneficial mutation, genes for cooperative traits should have relatively greater levels of 
polymorphism and divergence. (D) Predicted polymorphism of private (yellow) and cooperative 
(blue) genes as relatedness varies for a trait where cooperation is favoured when ! > 0.25. For private 
traits, polymorphism is independent of relatedness. For cooperative traits, expected polymorphism 
relative to a private trait is inversely proportional to r when cooperation is favoured. When r=1, there 
is no difference in polymorphism between cooperative and private traits. When r<0.25 cooperation 
is not favoured, so relatedness no longer predicts the level of polymorphism observed. 
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Results and Discussion 
 
We compared genetic variation in traits which are hypothesised to be cooperative with traits 

that are hypothesised to be private (Figure 1). The predicted results from the population genetic 

analysis for kin selection and other competing hypotheses are shown in Table 1. As no single 

measure can separate the different possible forms of selection, it is important to consider all of 

these measures together. We examined 41 genomes of P. aeruginosa environmental isolates, 

focusing our analyses on six groups of traits where the cooperative and private traits were likely 

to be expressed at relatively similar rates (Supplementary Table 6).  

 
Table 1: Predicted results from population genetics analysis for four different forms of selection 
(positive/directional selection, kin-selection, balancing selection, and purifying selection). Levels of 
divergence, polymorphism, frequency of deleterious mutations are shown as values for cooperative 
genes relative to private genes. Tajima’s D uses information about the frequency of polymorphism, and 
predictions are shown as the absolute value, with extreme values indicative of positive or balancing 
selection. Mcdonald-Kreitman compares levels of polymorphism and divergence, and a significant 
result is indicative of either positive or balancing selection. 
Selection 

type 

Divergence Polymorphism Deleterious 

mutations 

Tajima’s D Mcdonald-

Krietman 

Positive High Low - <<0 p<0.05 

Kin-

selection 

High High High » 0 n.s 

Balancing Low High - >>0 p<0.05 

Purifying Low Low - » 0 n.s 

 

Quorum Sensing 

 

We started by examining genes induced by the quorum sensing (QS) signalling system (34, 

35). This system regulates gene expression in response to the density of a diffusible signal 

molecule produced by cells. As cell density increases, the concentration of the signal molecule 

also increases, leading to the upregulation of many genes. In P. aeruginosa, the quorum sensing 

network regulates several hundred genes, which comprise approximately 6% of the genome 

(36).  

 

There are four advantages to examining the quorum sensing system. First, it regulates a number 

of traits which are hypothesised to be cooperative, as well as a number of traits that have only 
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private benefits (Figure 1a) (37, 38). For example, the secretion of enzymes to digest proteins 

outside the cell (cooperative), versus the production of enzymes to metabolise molecules within 

the cell (private). Second, control by the shared quorum sensing network means that the genes 

coding for these different traits are likely to be expressed at relatively similar rates on average 

(34, 35). This allows us to control for the potentially confounding influence that expression 

rates may have on patterns of genetic variation (22). Third, co-regulation of genes acts as a 

control for mutations in non-coding regulatory and promoter regions that could affect the 

production of public goods. Fourth, the large size of the network means that there are sufficient 

genes for a meaningful comparison (See Methods).  

 

We used a combination of gene annotations and experimental data to assign genes as 

controlling either cooperative or private traits (See Methods). For example, we categorised the 

extracellular elastase LasB as cooperative, because it has been shown to be an exploitable 

public good in laboratory experiments (39). We also included several other extracellular 

proteases controlled by QS signalling, such as PIV and PepB, which can provide benefits to 

the local group of cells and are known virulence factors (40, 41). Private traits include genes 

encoding proteins such as Nuh, an intracellular enzyme that allows cells to metabolise 

adenosine within the cell (5). The set of cooperative genes and their function are given in 

Supplementary Table 1. Our set of genes contains some that respond specifically to only one 

of the two major QS signals, so we checked the robustness of our results by restricting the 

analysis to only genes that respond to both QS signals in Supplement S9. 

 

Quorum Sensing: Polymorphism 

 

We found that genes regulating cooperative traits had significantly higher levels of 

polymorphism than genes regulating private traits (Figure 2; ANOVA '(,*+,(=12.0, p<0.01. 

Tukey’s HSD p=0.009). This difference was also significant when examining synonymous and 

non-synonymous sites separately (Synonymous: ANOVA '(,*+,-=30.0, p<10/0; Tukey’s 

HSD p=0.004. Non-synonymous: Kruskal-Wallis 1*(2) = 22.7, 6 < 10/8; Dunn Test p=0.04. 

Supplementary Figure 1). In all cases, the average pairwise nucleotide diversity per site (p) 

was significantly higher in cooperative genes compared with private genes. We discuss 

possible reasons for increased polymorphism being manifest at synonymous sites as well as 

non-synonymous sites in the following section.  
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We also found the same pattern of elevated polymorphism in cooperative genes when 

comparing to a background set of 2459 private genes not involved in the QS system 

(Supplement S5). This background set was made up of genes whose proteins localise to the 

cytoplasm, since these are the class of gene least likely to have a cooperative function. 

However, some cytoplasmic genes will be critical to the process of producing and secreting 

public goods, particularly in complex public goods such as pyoverdine that require several 

biosynthesis steps (42). Examining quorum sensing controlled genes, the ratio of non-

synonymous to synonymous polymorphism did not differ significantly between genes 

controlling cooperative versus private traits (ANOVA '(,*++9=32.4, p<10/0. Tukey’s HSD 

p=0.963). However, QS-regulated private genes had a significantly higher ratio than the 

background set of private genes (Tukey HSD p<0.03) (Supplementary Figure 2). This result 

reflects the finding that polymorphism is increased at both non-synonymous and synonymous 

sites in cooperative compared to private genes, and that QS-regulated genes may be under 

overall stronger selection than the background set of private genes. This could be because QS-

regulated genes include many virulence factors and genes with large fitness effects such as 

those involved in biofilms, social motility, and obtaining nutrients (38).  

 

 
Figure 2: Nucleotide diversity per site for private QS (yellow) and cooperative QS (blue) genes. 
Each dot represents a gene, and the horizontal line represents the median for each group. The grey 
dotted line represents the median for private genes across the genome. Genes for cooperative traits 
showed significantly higher polymorphism than genes for private traits. 

Quorum Sensing: Divergence 
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We found that genes regulating cooperative traits had significantly higher divergence than 

genes regulating private traits (Figure 3). We measured divergence as the rate of protein 

evolution, quantified as the number of substitutions per site when comparing the reference 

genome PAO1 to the known taxonomic outlier PA7 (43). The difference was significant when 

examining both non-synonymous (Figure 3A; Kruskal-Wallis 1*(2) = 25.5, 6 < 10/,. Dunn 

Test p=0.045) and synonymous sites (Figure 3B; ANOVA '(,*((9=0.08, p=0.771. Tukey’s 

HSD p=0.03). 

 
 

 
Figure 3: Divergence at non-synonymous (A) and synonymous (B) sites, measured as rates of 
protein evolution (e.g. non-synonymous substitutions per non-synonymous site) for Private QS 
(yellow) and Cooperative QS (blue) genes. Each point represents a gene, and the horizontal line 
represents the median for each group. The grey dotted line represents the median for private genes 
across the genome. Genes for cooperative traits showed significantly higher divergence than genes 
for private traits. 

 
Divergence was significantly elevated at both non-synonymous and synonymous sites in 

cooperative genes, and the ratio of non-synonymous to synonymous divergence does not differ 

between the two classes of gene (Kruskal-Wallis 1*(2) = 37.8, 6 < 10/9. Dunn Test p=0.40). 

However, both cooperative and private quorum sensing genes have a significantly higher ratio 

than the background private genes (Tukey HSD cooperative p<10/*, private p<10/<), and 

cooperative genes have slightly higher median ratio than private genes (Supplementary Figure 

3). Overall levels of both polymorphism and divergence are consistent with earlier work (see 

Supplement S8). 

 

Our finding that cooperative genes have significantly elevated polymorphism at both 

synonymous and non-synonymous sites suggests that mutations at synonymous sites are under 
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selection, and not evolving neutrally. In microbes, there is substantial evidence that 

synonymous mutations have fitness effects (44), such as increasing antibiotic resistance (45) 

and generating public goods cheats in viruses (46). Synonymous mutations in pyoverdine 

biosynthesis genes repeatedly occur in experimental evolution of P. aeruginosa biofilms (47), 

and synonymous mutations in QS genes of V. campbellii are associated with intermediate QS 

phenotypes (48). Similar patterns of elevated polymorphism at both non-synonymous and 

synonymous sites was also found in the social microbe D. discoideum (10). We did not find 

evidence for systematic differences in codon usage that could explain the synonymous 

variation that we see (Supplement S1). 

 
Quorum Sensing: deleterious mutations 

 

Population genetic theory also predicts that deleterious mutations are more likely be observed 

in genes controlling cooperative traits which are maintained by kin selection (10, 25). This 

prediction is a result of relaxed selection making deleterious mutations less likely to be 

removed by selection. We tested this prediction by looking overrepresentation of a subset of 

loss-of-function mutations that are easily identifiable. Specifically, we looked for (1) mutations 

that generate stop codons; (2) frameshift mutations. Our previous designation of cooperative 

genes was based on searching the literature for QS-regulated genes that have been 

demonstrated to be cooperative in the lab. Because of this, we don’t know how many other 

‘cooperative’ genes there are that were not included in our previous dataset. Therefore, to test 

whether genes with deleterious mutations were more likely to be cooperative, we needed to use 

a proxy of cooperative genes that examined all genes in the genome. We used the production 

of  extracellular proteins as a proxy for cooperation, as has been done previously (49, 50), since 

this can be systematically calculated for the whole genome using the protein subcellular 

localization prediction tool PSORTb (51). 

 

We found that deleterious mutations were more common in genes controlling the production 

of extracellular proteins, and which where therefore more likely to be cooperative. Of the 359 

genes which have known protein localization and at least one deleterious mutation, 12 code for 

extracellular proteins (3.3%). Genes coding for extracellular proteins make up 1.6% of all 

genes with known protein localization, but 3.3% of genes with deleterious mutations, which 

represents a significant overrepresentation of genes coding for extracellular proteins in genes 

containing deleterious mutations (binomial test, p<0.05). Additionally, this increased to 4.4% 
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(19/431 mutations) when we counted the total number of deleterious mutations in genes coding 

for extracellular proteins (rather than number of genes with at least one mutation), suggesting 

that extracellular proteins are also likely to contain multiple mutations per gene. Interestingly, 

we observed a particularly high rate of deleterious mutations in LasR, the master regulator of 

the QS system. Whilst LasR isn’t an extracellular protein, LasR mutants are common in 

generating ‘cheaters’ in clinical isolates (5, 52), and we show here that they also appear to be 

common in environmental isolates.   

 

Quorum Sensing: robustness and competing hypotheses. 

 

Our conclusion that kin selection favors cooperation was further supported by five further 

analyses which eliminated alternative explanations for the patterns that we observed. First, 

genes for cooperative traits could alternatively have significantly greater polymorphism than 

genes for private traits if they were more likely to be under balancing selection. For example, 

due to frequency dependent selection between cooperators and cheats (11, 12, 25, 53, 54). 

However, we found no evidence that genes for cooperative traits are overrepresented in genes 

evolving under balancing selection, and no evidence that balancing selection explained the 

elevated polymorphism we observed (Supplement S3). 

 

Second, genes for cooperative traits could have significantly greater divergence than genes for 

private traits because they are more likely to be under positive selection and therefore have 

fixed adaptive differences (24, 25). However, we found no evidence that genes for cooperative 

traits are overrepresented in genes evolving under positive selection, and no evidence that 

positive selection explains the elevated divergence we observe (Supplement S4). The 

population genetic parameters that we analysed are designed to test deviation from neutral 

expectations, and therefore have various underlying assumptions. Neutral theory (55) is based 

on the idea that polymorphisms are added by mutation, and their fate is largely determined by 

drift (56). This means that populations are at mutation-drift equilibrium, and we can make 

predictions about the level or polymorphism we expect in a population. We can then use tests 

like Tajima’s D or the Mcdonald-Krietman test to test for deviations from the predictions of 

the standard neutral model. Whilst we cannot completely rule out problems in interpreting these 

tests due to issues such as selection acting at different sites in subpopulations (see Supplement 

S14), no alternative hypotheses can explain the patterns we see across multiple sets of isolates, 

and across multiple traits.  
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Third, our findings could reflect some other shared aspect of cooperative genes, rather than 

being cooperative per se. We performed a functional annotation of all the QS controlled genes 

using the eggNOG database (57), which splits genes into functional categories such as 

‘metabolism’, ‘cellular processes and signaling’, and ‘information storage and processing’. We 

found that whilst genes for cooperative traits are overrepresented in genes annotated as 

‘metabolism’ and underrepresented in genes annotated as ‘Information storage and 

processing’, there was no difference in polymorphism between these two functional categories 

(Supplementary Figure 4). Whilst we did find a difference for divergence (Supplementary 

Figure 5), it is ‘information storage and processing’ genes that have higher divergence. Overall, 

it appears that there is no other shared function of genes for cooperation that explains greater 

divergence and polymorphism. 

 

Fourth, cooperative genes could appear more polymorphic and divergent than private genes 

because of differences in gene length. In human genomes at least, shorter genes tend to have 

higher expression (58) and greater divergence (59) than longer genes. If cooperative genes tend 

to be much shorter than private genes this could bias our results, even though we control for 

gene length by using polymorphism measures calculated per site, and control for variation in 

expression by analysing QS controlled genes which should have similar average expression. 

However, cooperative genes did not differ in length compared to private genes (t-test = =

0.448, 6 = 0.657). Further, when considering all genes, there is no significant correlation 

between gene length and polymorphism (Pearson’s correlation = = −0.650, 6 = 0.516). We 

checked the robustness of this analysis by removing the bottom quartile of genes (<188 amino 

acids) from our analysis, and found that this makes no difference to the qualitative results 

(Supplement S7). 

 

Fifth, if cooperative and private genes differed in their likelihood of being transferred 

horizontally over their evolutionary history, that could effect comparisons due to the inherent 

problems that horizontal gene transfer raises in population genetics (60). We conducted an 

analysis using pangenome data (Supplement S11), showing that the cooperative genes we used 

are either part of the core genome, or present in most strains with rare duplications. More 

generally, recent work has shown that across bacteria cooperative genes are not more likely to 

be on plasmids (and therefore transferred) than chromosomes, including in P. aeruginosa (61). 



Appendix A 

 179 

Other Forms of Cooperation 

 

Our analyses on quorum sensing provided support for cooperation being favoured by kin 

selection. We then tested the robustness of this conclusion by examining five other cases where 

we could compare genes for cooperative and private traits that were likely to be expressed at 

similar rates: (1) iron-scavenging siderophore pyoverdine; (2) iron-scavenging siderophore 

pyochelin; (3) antimicrobial resistance; (4) toxins; (5) adhesion and movement (Figure 4, Table 

2). As each comparison considers traits with the same or similar fitness components, the 

strength of selection is expected to be similar between the ‘private’ and ‘cooperative’ genes, 

aiding comparisons with theory (25). We have focused on cooperation, because we are 

examining genes for cooperative traits, but if r<1 then we could also expect selection for 

conflict and exploitation, as has been examined in the slime mould Dictyostelium discoideum 

(62, 63).  

Table 2: Additional comparisons of cooperative vs. private genes. We examined five scenarios. 
In the first two of these we compared genes for the same trait with either private (uptake) or 
cooperative (production and export) fitness consequence: pyoverdine and pyochelin. For the 
other three, we compared genes for traits with similar functions, but where traits varied in the 
extent to which they were relatively private  or relatively cooperative: antimicrobial resistance; 
toxins and adhesion / movement.  
Comparison Relatively private genes Relatively cooperative genes 
Pyoverdine 
 
 

Genes involved in the uptake and 
use of iron-bound pyoverdine in the 
cell. 

Genes involved in the biosynthesis 
and export of pyoverdine into the 
extracellular space. 

Pyochelin 
 
 

Genes involved in the uptake and 
use of iron-bound pyochelin in the 
cell. 

Genes involved in biosynthesis and 
export of pyochelin into the 
extracellular milieu. 

Antimicrobial 
resistance 
 
 

Genes that control efflux pumps, 
which expel unaltered antibiotics 
back into the environment, and outer 
porins, which alter resistance 
through traits such as membrane 
stability. 

Genes where the antibiotic is 
modified and all cells in the local 
population benefit. This includes 
the production of beta-lactamases 
and enzymes that de-activate 
aminoglycoside antibiotic. 

Toxins 
 
 

Genes which control mechanisms to 
eliminate competitors via direct 
contact and the injection of toxins, 
such as the type IV secretion system 
(T6SS). This may still provide an 
indirect benefit to other cells, but 
relatively less than diffusible toxins. 

Genes involved in the production of 
bacteriocins to eliminate 
competitors such as R and F 
pyocins, which diffuse through the 
environment. 

Adhesion and 
movement 
 
 

Genes which allow cells to stick-to 
and move across surfaces, such as 
flagella and pili. 

Genes producing extracellular 
polysaccharides and rhamnolipids 
that allow cells to stick and move 
together. 
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Figure 4: Secondary comparisons of cooperative vs. private traits. (A) pyoverdine and 
pyochelin siderophores. (B) Antimicrobial resistance. (C) Toxins. (D) Cell adhesion and 
movement. For more details see Table 2 and Methods. Gene lists for each comparison are in 
Supplementary Tables 2-4 

 
Examining across these different cases, we consistently found that genes coding for relatively 

cooperative traits were more polymorphic and showed greater divergence than genes coding 

for relatively private traits. Comparing across all six cases, including quorum sensing, the 

average level of polymorphism was consistently greater (6/6 cases) in genes coding for 

cooperative traits (Figure 5; Wilcoxon signed rank exact test, V=21, p=0.03). We found 

analogous patterns when analyzing synonymous and non-synonymous sites separately 

(Synonymous: 6/6 cases, Wilcoxon signed rank exact test, V=21, p=0.03 Supplementary 
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Figure 6; Non-synonymous: 5/6 cases, Wilcoxon signed rank exact test, V=20, p=0.06 

Supplementary Figure 7). 

 

Comparing across all six cases, the average level of non-synonymous divergence was 

consistently greater (6/6 cases) in genes coding for cooperative traits (Figure 6; Wilcoxon 

signed rank exact test, V=21, p=0.03), with divergence also higher when analyzing 

synonymous divergence separately (Supplementary Figure 8: 6/6 cases, Wilcoxon signed rank 

exact test, V=21, p=0.03). 

 

In the above analysis, we examined whether there was a consistent pattern across different 

types of trait, taking each trait type as a single data point (n=6). One reason that we have taken 

this relatively conservative approach is that the six traits differ in their power to test between 

cooperative and private traits. For example, with toxins, adhesion and movement, we are 

comparing relatively private traits that are likely to still have some cooperative benefit, 

compared with relatively more cooperative traits (Table 2). With antibiotic resistance, private 

and cooperative traits can also involve resistance to difference antibiotics (Table 2). 

Nonetheless, while some of these other five comparisons could have had less power than our 

analysis of quorum sensing, we found the same consistent pattern across all cases (Figures 5 & 

6).  

 

As an alternative analysis, we also combined all genes from all traits into a single data set (n=92 

cooperative genes, n=405 private genes). In this case, we also found the same pattern, that 

genes for cooperative traits showed significantly greater polymorphism and divergence 

(nucleotide diversity: t175=3.920, p<0.001; non-synonymous divergence t147=4.353, p<0.0001) 

(Supplement S6). We did not analyse the patterns within each type of trait separately, because 

the sample size in some groups was too low. For example, we were only able to analyse three 

private pyochelin genes, and four cooperative conflict genes (R and F pyocin bacteriocins). 
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Figure 5: Private versus cooperative comparisons for six trait types for polymorphism (nucleotide 
diversity). Panel A is the private versus cooperative comparison for quorum sensing genes, from the 
main analysis (Fig. 2B), shown for comparison. Across different traits, genes for cooperative traits 
showed a consistent trend towards higher polymorphism than genes for private traits. 
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Figure 6: Private versus cooperative comparisons for six trait types for divergence (non-
synonymous). Panel A is the private versus cooperative comparison for quorum sensing genes, from 
the main analysis (Fig. 3), shown for comparison. Across different traits, genes for cooperative traits 
showed a consistent trend towards higher divergence than genes for private traits. 

 
 
Clinical Isolates 

 

The robustness of our results was also supported when we analysed whole genomes from 41 

clinical isolates. While most clinical strains are often acquired from the environment (64), it is 

generally thought that they aren’t transmitted back to the environment (65). We therefore 

focused on environmental isolates because they are more likely to represent natural 

populations. Furthermore, certain environmental conditions such as treatment with antibiotics 

may affect diversity at some genes (e.g. those involved in immune escape) but not others, so 

we were decided not to analyze clinical and environmental isolates together. Nonetheless, when 

analyzing clinical isolates, we found the same qualitative patterns, with genes for cooperative 

traits showing increased polymorphism consistent with relaxed selection (Supplement S2). 

Further, our results for polymorphism and divergence are in line with previous studies in this 

species (Supplement S8). 
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Relatedness 

 

Given that the predicted degree to which selection is relaxed on cooperative traits is inversely 

proportional to relatedness between producers and recipients of cooperative traits, we can use 

our data to estimate relatedness. We do this by comparing the relative level of polymorphism 

between cooperative and private QS-regulated genes, as we can make direct predictions of 

relative polymorphism from a simple population genetic model with some assumptions 

(Supplement S12). In particular, because the theory is about comparing one cooperative gene 

with one private gene under equal strength of selection, we have to assume that the magnitude 

and distribution of selection coefficients on cooperative and private traits is on average the 

same. 

 

We estimate that relatedness is r = 0.84 for the natural isolates and r = 0.85 for the clinical 

isolates (Supplement S12). This method allows us to estimate relatedness in natural 

populations, when it would otherwise be problematic to estimate directly. In order to estimate 

relatedness directly, it would be necessary to both genotype cells, and identify the spatial scale 

over which social interactions take place. This is possible in cases where interactions take place 

in a defined social group such as a fruiting body (18). In contrast, things get much more difficult 

with public goods, especially as cells live and grow in a range of different environments, and 

produce a variety of public goods (66). Indeed, laboratory data could even lead to very 

misleading estimates. In contrast, by using an indirect population genetics approach, we are 

effectively letting natural selection work out the spatial scale of interaction for us (67). Natural 

selection will respond to the average relatedness, which will depend upon all the factors that 

would be hard or impossible for us to directly estimate.  

 

Other Species 

 

Our results build upon previous studies to show how cooperative social behaviours can be 

favored by kin selection in an analogous way across the natural world. Van Dyken and Wade’s 

(15) groundbreaking analysis on quorum sensing genes across seven bacterial species found 

similarly increased polymorphism and divergence, but did not have sufficient information at 

the time to distinguish between private and cooperative quorum sensing controlled traits, or 

control for expression rates (22). Population genetic analyses on the slime mould Dictyostelium 

discoideum have examined both social conflict and relaxed selection (10–12, 68). In the social 
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insects, genes for cooperative traits diverge and evolve faster (28, 69), yet experience lower 

rates of adaptive evolution (19). Furthermore, selection on cooperative worker traits appears to 

be relaxed with increased mating frequency, when relatedness is lower (20, 21, 26). Social 

insects have the advantage that genes can be readily separated by gene expression data into 

worker traits which are presumably cooperative (because workers are largely sterile) and queen 

traits that are likely to evolve under direct fitness effects (25, 70–72). 

 
Conclusions 
 

Molecular population genetics offers a powerful tool to study how selection acts in natural 

populations (56). In combination with theory, this type of analysis can determine the extent to 

which microbial traits are cooperative, and how important this cooperation is in microbes (10–

12, 15, 22–25). These results add to the growing evidence that cooperation plays an important 

role in natural populations of bacteria and other microorganisms. Experiments carried out in 

hosts have shown that natural populations engage in cooperation (73–76), and can be exploited 

by non-cooperative cheats (13, 14, 16, 77, 78). Looking across species, comparative studies 

have found higher levels of cooperation in species where the relatedness between interacting 

individuals is higher (17, 30). We have shown here that molecular population genetics can also 

provide evidence for the role of cooperation in natural populations. 
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Methods 
 

Controlling for levels of expression 

The central predictions of elevated divergence and polymorphism are characteristic of relaxed 

selection, but there are factors alongside kin selection (indirect fitness)  that can lead to relaxed 

selection. Notably, conditional expression can also produce the same effect, via the same 

mechanism of weakening the association between possessing a genotype and producing a 

phenotype that can be seen by selection. Specifically, if a gene is expressed by only a fraction 

of individuals, or by all individuals but in only a fraction of generations, selection is relaxed 

(22). 

 

In order to control for the effect of conditional expression we restricted our primary analysis 

to the subset of genes co-induced by the quorum sensing (QS) signalling system. Quorum 

sensing is a mechanism for coordinating gene expression whereby diffusible signals 

accumulate as cell density increases, eventually reaching a threshold where the receptor is 

activated and expression of a set of genes is triggered. In P. aeruginosa there are several 

hundred genes whose expression is controlled by QS signalling, of which there is an 

overrepresentation of proposed cooperative traits, as well as many private traits (37, 38). We 

therefore compare cooperative genes to private genes within this set of QS controlled genes, 

allowing us to control for the effect of conditional expression. In a separate analysis, we assess 

whether conditional expression itself predicts levels of polymorphism and divergence 

(Supplement S10). 

 

Categorisation of genes 

 

For the main analysis we focus on genes induced by QS signalling in the Pseudomonas 

aeruginosa reference strain PAO1, for which we use the set of genes described in (36). Within 

these 315 genes, we selected a set of genes that are putatively ‘cooperative’ by manually 

assessing gene function from annotation in the Pseudomonas Genome Database (79), as well 

as a literature search for any experiments demonstrating a cooperative fitness effect. This was 

determined by looking for studies that show the basic prediction for a public good (producers 

outperform non-producers clonally, but non-producers outperform producers in groups). The 

set of cooperative genes and their function is shown in Supplementary Table 1. This is not 
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intended to be a fully comprehensive list of genes with any cooperative effect; indeed there are 

several QS induced genes of unknown/predicted function which are plausibly cooperative, and 

several categories of genes that may have at least some cooperative component. We compared 

cooperative QS to private QS genes for the main comparison, and made further comparisons 

to a background set of private genes in the rest of the genome. For this set of background genes, 

we used proteins localise to the cytoplasm, as these are the class of gene least likely to have a 

cooperative function. Such cytoplasmic genes are known to be over-represented with essential 

genes (80), which suggest an overrepresentation of genes with functions such as central 

metabolism and replication. 

 

For some analyses where we needed a set of cooperative genes across the whole genome, we 

followed the approach of previous studies which have used extracellular localization as a proxy 

for sociality (49, 81). Extracellular localization can be reliably and systematically calculated 

using PSORTb (51). Whilst it is evident that not all cooperative genes are extracellular and not 

all extracellular proteins are cooperative, any strong effect of sociality is very likely to be 

captured by this proxy. For further investigation into properties that may differ between 

cooperative and private genes, we used eggNOG functional annotations (57). 

 

Secondary comparisons 

In our secondary analysis we examined five comparisons of cooperative vs. private genes 

(Table 2). Firstly, we used pyoverdine, an iron-scavenging siderophore which is extremely well 

studied for sociality (4, 32, 82). We separated the genes involved in the pyoverdine pathway 

into cooperative and private components, which is possible thanks to good knowledge of the 

function and localization of the genes involved (42). We classified genes involved in the 

biosynthesis and export of pyoverdine into the extracellular milieu as cooperative, and genes 

involved in the uptake and disassociation of iron-bound pyoverdine in the cell as private 

(Supplementary Table 2). Pyochelin, the secondary siderophore of P. aeruginosa, was 

separated into cooperative and private components using the same principles, forming our next 

secondary comparison. 

 

For the two iron-scavenging comparisons we separated a single trait into cooperative and 

private function, whereas for the other comparisons here we use separate traits for the private 

vs. cooperative comparison, whilst making effort to ensure that the traits are directly 

comparable.  
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Antimicrobial resistance (AMR) is a broad feature which has been well-studied in P. 

aeruginosa for its social fitness effects. There are many ways in which cells can express 

resistance. One such mechanism is through the production of beta-lactamases which detoxify 

the environment, and therefore can provide cooperative benefits to the local population (83). 

Aminoglycoside resistance can also be a cooperative trait, as the antibiotic is modified and 

therefore the environment is detoxified (84). This is in contrast to efflux pumps, which expel 

unaltered antibiotics back into the environment (85), and therefore have private fitness effects. 

Outer porins are another private mechanism (86), which alter resistance through traits such as 

membrane stability (87). The genes used in this analysis are shown in Supplementary Table 3. 

 

Toxin production is another aspect of bacterial life that can be separated into relatively 

cooperative and private components. In P. aeruginosa there are various mechanisms by which 

strains compete with and kill each other, which can again be separated into cooperative and 

private components. Type VI secretion systems (T6SS) involve direct contact with competitors 

and the use of a needle to inject toxins (88), therefore having a private fitness effect. By 

contrast, bacteriocins such as R and F pyocins don’t require direct contact, and diffuse through 

the environment (33), which allows cooperative fitness effects on other cells. Elimination of 

competitors via direct contact can still have a cooperative social benefit, and so our comparison 

here is between relatively cooperative and relatively private. The gene list for R and F pyocins 

comes from Ghoul et al. 2015 (33). Note that we only use the R and F pyocins and not the S 

pyocins. R and F pyocins are made up of many genes, which form a structure that resembles a 

bacteriophage tail (89). S pyocins however consist only of killing and immunity genes (33), 

and so are less comparable with T6SS. The T6SS gene list comes from the set of genes in the 

known three distinct T6SS loci in P. aeruginosa (88), alongside the vgr genes (90) 

(Supplementary Table 4). 

 

The final cooperative vs. private comparison we used was a broad distinction between 

extracellular polysaccharides and rhamnolipids that allow cells to stick and move together and 

are presumed cooperative, and flagella and pili that allow cells to stick-to and move across 

surfaces. For extracellular polysaccharides (EPS) we used the genes for two of the major P. 

aeruginosa polysaccharides PSL and PEL (91), but not the third polysaccharide EPS alginate 

which is only a major component of EPS production in clinical settings (92). For rhamnolipids, 

we used the three biosynthesis genes (6), which are known to be a cooperative trait. For flagella, 
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we used the gene list in Dasgupta et al. 2003 (93) . For pili, we used the gene list in the review 

by Burrows 2012 (94). This category lumps together some different functions, and represents 

our most tentative grouping (Supplementary Table 5). 

 

We used Paired samples Wilcoxon tests to test if cooperative genes differ significantly from 

private genes for each population genetic parameter, with the cooperative and private 

comparison for each trait type forming a pair. We chose the non-parametric form of a paired t-

test because the sample size is quite low for the cooperative genes in some comparisons, so 

differences were rarely normally distributed and means were strongly effected by extreme 

values. We calculated two-sided p-values using the wilcox.test function in R. 

 

Sequences 

 

P. aeruginosa is an opportunistic pathogen, with most clinical strains also widely spread 

environmentally (64). To avoid complications from the selection faced in clinical settings, we 

focused our primary analysis on environmental isolates. It is generally thought that whilst 

clinical infections are acquired from the environment, clinical isolates generally aren’t 

transmitted back to the environment (65). We chose strains from a list of Pseudomonas 

aeruginosa strains on the Pseudomonas Genome Database accessed at pseudomonas.com (79). 

We gathered all available meta data on isolation sources and locations, and first filtered for 

strains for which the raw sequence read data was publicly available (in the form of an SRA 

archive), and then further filtered for strains which were unambiguously environmental (by 

first removing any strains for which the meta-data mentioned ‘human’, ‘clinical’, or the name 

of a disease, and then further removing any records for which it wasn’t possible to ascertain 

their source). This gave a list of 96 possible strains at the time of analysis. This strain list had 

heavy representation of multiple strain collections from the same locality or environment type, 

so we took a smaller sample of 41 strains by sampling randomly whilst ensuring that no country 

featured more than five times. We also screened the isolates to make sure no strain had a known 

mutator element such as mutS that could increase diversity and affect comparisons. Whilst one 

strain had an in-frame deletion mutation in the mismatch repair gene mutL, removing this strain 

makes no difference to our conclusions (Supplement S13). The 41 strains used are shown in 

Supplementary Table 6.  

  

SNP Calling 
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We downloaded raw sequencing reads for each of the 41 strains plus the outgroup PA7 (SRA: 

SRR9418201) from the European Bioinformatics Institute’s European Nucleotide archive 

(www.ebi.ac.uk/ena) – see Supplementary Table 6 for the relevant ID of each sequencing run. 

We trimmed reads for each strain to remove adapters and low quality reads using Trimmomatic 

(95). We removed leading and trailing reads with a quality score <3, and also removed reads 

if average quality in a four base sliding window was below 20. The resulting reads were quality-

control checked using FastQC (96). 

 

Next, we mapped reads for each strain, and aligned to the reference strain PAO1 (Accession: 

SAMN02603714) using BWA (97). We sorted and converted the resulting SAM files to BAM 

files using SAMtools (98). We then removed PCR duplicates using Picard tools (99). 

 

We called variants on all strains using BCFtools (100), and converted to a VCF file for analysis. 

Next, we filtered variants to removed INDELs, and further quality filtering conducted using 

the default settings of the vcfutils python script in SAMtools (98) to filter for minimum 

mapping quality (=10), minimum read depth (=2), and minimum p-value for strand bias 

(=0.001).  

 

We used the featureCounts tool in Subread (101) to assess coverage of each gene in each strain, 

removing any strains with <2 reads in >50% of genes (which in this case was no strains). We 

used the coverageBed tool in BEDtools (102) to analyse what proportion of each gene’s length 

had been mapped – so that we could adjust per-site population genetic measures to the mapped 

length of a gene, rather than the length of the gene in the reference genome. 

 

We removed any site in the genome which hadn’t been called in >80% of strains. This meant 

that each site had a call in at least 33 strains. We conducted a brief power analysis by removing 

8 strains from the VCF file to ensure that downstream population genetic measures would not 

substantially altered by this lowering of sample size. After filtering, we had a VCF file with a 

total of 391,770 SNPs among the 41 environmental strains (not including the outgroup). 

 

Population Genetic Analysis 
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We conducted the majority of the molecular population genetics analysis using the PopGenome 

package (version 2.7.5) in R (103). Specifically, we calculated the parameters nucleotide 

diversity p, Tajima’s D, Fu and Li’s F*, Fu and Li’s D*, Mcdonald Kreitman test, Neutrality 

index, alpha, and the Direction of Selection statistic using the PopGenome package. For 

statistic where an outgroup is necessary, we used PA7, a known taxonomic outlier commonly 

used (43). Where necessary, to obtain per-site measures, we calculated parameters separately 

for synonymous and non-synonymous sites and scaled to the relevant mapped length. Genes 

with mapped length <50% were removed from the analysis at this stage – leaving a final set of 

5234 genes 

 

We calculated rates of protein evolution (AB/AD) by comparison of the reference strain PAO1 

to a known taxonomic outlier, PA7 (43). Next, we extracted SNPs for PA7 from the VCF file, 

and inserted them into the sequence of PAO1 using the ‘FastaAlternateReferenceMaker’ tool 

in the GATK suite (104). We compared this pseudo-genome sequence to the sequence of PAO1 

using the seqinR package in R (105) to determine AB, AD, and AB/AD for each gene. Genes 

which weren’t aligned between the two strains return were removed from this analysis.  

 

For some tests, we conducted further analysis by analyzing whether cooperative genes were 

overrepresented in the subset of genes which had a statistically significant result for a given 

parameter. Some tests such as Mcdonald-Kreitman are designed to test the null hypothesis for 

an individual gene. We used various measures that use the same information as the MKT to 

allow comparisons across genes (e.g. neutrality index, alpha, direction of selection statistic), 

and we also extracted the set of genes for which the test is significant (meaning an excess of 

either non-synonymous substitutions or nonsynonymous polymorphism). For statistics that use 

data on the site frequency distribution (Tajima’s D, Fu & Li’s D*, Fu & Li’s F*), we also 

extracted the genes with a significant value. For Tajima’s D this was conducted using the beta 

distribution test (106) conducted in the R package Pegas (107). For Fu & Li’s D*/F* statistics 

we used the critical value’s from the original paper (108) for n=100 genes to test significance 

at the a=0.025 level. Although we have many more genes than 100, the critical value for these 

tests will be proportional to ln(n) so this is a reasonable approximation. After extracting the 

subset of genes which are significant for a given test, we test for whether cooperative genes 

(see below) are over- or under-represented in this class using a binomial test. 
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One signature of relaxed selection on sociality genes is an increase in deleterious mutations, 

such as those which have large disruptive effects on the function of a gene. For this analysis, 

we annotated variants with SNPeff (109) and counted mutations that generate premature stop 

codons. We included INDELs at this stage so that we could also count frameshift mutations. 

 

To test whether cooperative genes are over- or under-represented in a set of genes, it is 

necessary to use a proxy for cooperative genes, because our designation of cooperative genes 

is not a systematic genome-wide assignment and so we cannot confidently say if any number 

is an overrepresentation since we don’t know how many ‘cooperative’ genes there are in the 

genome. We used extracellular proteins as a proxy for cooperative genes, which has been used 

several times before (49, 50) and can be systematically calculated for a whole genome using 

PSORTb (51). Although it is evident that not all cooperative genes are extracellular and not all 

extracellular proteins are cooperative, if there was a strong signature of sociality captured by 

measures such as Tajima’s D, we would expect to see an effect with this proxy.  

 

Statistical Analysis 

 

We used R (110) for all statistical analyses and graph plotting. For the main analysis comparing 

cooperative QS genes to private QS genes, we used a background set of genes for comparison, 

which comprised all genes in the genome localized as cytoplasmic by PSORTb. This created a 

large set of genes, of which some may of course be cooperative, but are arguably the group 

least likely to be cooperative. 

 

Where possible, we used an ANOVA to analyze whether there were any significant differences 

between our three classes of genes (cooperative, private and background). Data were 

transformed using the Box-Cox transformation (111), which finds a value of l such that the 

transformation E
l/(

l
 gives the best approximation of a normal distribution. Transformed 

variables were checked for normality with the Kolmogorov-Smirnov test. For some variables, 

the Box-Cox transformation was not appropriate (as the formulation used does not allow zeros) 

so a transformation of the form FGH(I + K) was used, where c is a constant. After 

transformation and checking the assumptions of ANOVA tests, we conducted the omnibus 

ANOVA in R, and used Tukey’s HSD for post-hoc comparisons. Where data transformation 

was not sufficient to meet the assumptions of an ANOVA, we used the non-parametric 



Appendix A 

 193 

Kruskal-Wallis test, which compared medians in a ranked-order approach. The Dunn test was 

used for post-hoc comparisons of Kruskal-Wallis tests, and was only performed where the 

omnibus test was significant. 

 

Figures 

 

Results figures were all produced using the ‘ggplot2’ package in R (112). Conceptual figures 

were created with BioRender.com. 
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Are plasmid-carried genes for cooperation less complex? 
 
Abstract 
 
Many mechanisms are proposed to determine which traits are more likely to be transferred 
horizontally via plasmids, two of which have received a lot of attention: (i) genes with lower 
levels of connectivity and (ii) genes coding for cooperative traits, tend to be transferred 
horizontally and are therefore more likely to be found on plasmids. However, the second 
mechanism was not supported by a newly empirical study1, which reminded us that there might 
be an interplay between the two mechanisms in determining what traits are carried on plasmids. 
With a comparative analysis across 161 diverse prokaryotes species including both bacteria 
and archaea, we found that genes on plasmids were less connected than genes on chromosomes, 
and this finding could also be applied to genes coding for extracellular proteins, which are 
likely to be cooperative genes. Based on these results, our study then suggested that gene 
complexity represented by gene connectivity could be a factor restricting the horizontal transfer 
of cooperative genes to plasmids.  
 
Keywords: Horizontal gene transfer, cooperative trait, the complexity hypothesis, plasmid 
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Introduction  
 
Plasmids are extra-chromosomal genetic structures that can autonomously replicate and be 
transferred between cells. Along with phages and integrative conjugative elements (ICEs), 
plasmids are also the key vectors of horizontal gene transfer (HGT) and indispensable elements 
for shaping the genome of prokaryotes2–7. Due to their ability to move genetic materials 
between organisms that are not in a parent-offspring relationship, plasmids are recognized to 
be one of the most important genetic elements in the evolution of prokaryotes8–12. This makes 
plasmids an important research target not only in the fields of bacterial genetics but also in the 
fields of evolutionary biology13,14. 
 
The genes carried on plasmids are known to differ from those found on chromosomes. From 
an evolutionary perspective, plasmids are fundamentally self-interested entities, thus bear 
genes that promote their own replication and spread15–17. These genes are generally ‘core’ 
genes responsible for their vertical and horizontal transmission, such as those encoding proteins 
that direct plasmid replication, partitioning to daughter cells and conjugation18. Furthermore, 
plasmids encode genes that allow them to persist in the face of multiple constraints19. Examples 
include toxin-antitoxin systems, which ensure plasmids maintenance during segregation20–22; 
anti-restriction systems23,24 and biofilm formation25,26, which help plasmids bypass the 
mechanistic barriers to HGT27; and Type IV CRISPR-Cas systems, which mediate conflicts 
between plasmids28. On the other hand, plasmids encode ‘accessory’ genes that are beneficial 
to their hosts by increasing the range of environmental conditions to which their host can 
adapt14,16. For instance, the accessory functions conferred by plasmids genes include virulence 
factors29,30, antimicrobial resistance31–34, digestion of most classes of carbohydrates35, 
undergoing anoxygenic photosynthesis36, and bacteriocins37.  
 
One specific case of accessory traits carried on plasmids is the production of cooperative 
‘public goods’, which are protein products released that benefit local cell populations. A 
number of theoretical models have suggested that cooperative traits are favoured to be on 
plasmids because it strengthens the cooperation between cells. By allowing cooperative genes 
to reinfect ‘cheats’ that evade the production of public goods, and turning them into 
‘cooperators’, the HGT of cooperative traits can help stabilize the cooperation of neighbouring 
cells38–40. This explanation, however, was not supported by a recent across species comparative 
analysis, which found that cooperative genes were not overrepresented on plasmids1. Further 
analysis of their study showed that when cooperative genes helped promote the pathogen host-
range, they were more likely to be on plasmids1. This finding suggested that there might be 
multiple factors that affected whether the cooperative traits are on plasmids or chromosomes. 
Consequently, we turned to consider the influence of gene complexity on the locations of 
cooperative genes, which is a relatively well-understood factor that generally determines the 
tendency of genes to be successfully transferred and retained in evolution.  
 
The complexity hypothesis suggested that genes involved in the complex interconnected 
cellular process whose products interact with large numbers of other gene products were 
transferred at lower rates than less connected genes41,42. Further studies confirmed an inverse 
correlation between the rate of horizontal gene transfer and gene connectivity, which is defined 
as the number of protein-protein interactions (PPIs) of the gene product in the PPI networks43–
45. This hypothesis can be naturally expanded by hypothesizing that the higher the connectivity 
of a gene, the more complex it is, and therefore the less likely the gene is found on the plasmid 
rather than the chromosome (Figure 1). This would explain the absence of core genes from 
plasmids in general senses, and could also affect the horizontal transfer and location of genes 
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encoding public goods. If the cooperative genes have higher connectivity than non-cooperative 
genes, even if they are more likely to exert their cooperative advantages on plasmids, they 
would still be constrained to be on chromosomes. When the connectivity of two types of genes 
is roughly the same, the cooperative genes could still be confined to be located on chromosomes. 
This could happen if the power that restricts the cooperative genes on chromosomes offsets the 
benefit of keeping them on plasmids. If the connectivity of cooperative genes is lower than that 
of non-cooperative genes, cooperative traits are more of accessory traits that are less likely to 
be regulated to remain on chromosomes. In this situation, factors other than gene connectivity 
might contribute more to the location of cooperative genes. Taken together, a new test that 
considers the role of gene connectivity in determining the horizontal transfer and location of 
genes encoding public goods should be conducted.  

 
 
Figure 1. Highly connected genes are more likely to be found on chromosomes. According 
to the complexity hypothesis, genes with higher connectivity are more likely to be horizontally 
transferred than genes with lower connectivity. We extended this hypothesis by assuming that 
the higher the connectivity of a gene, the less likely the gene is found on the plasmid rather 
than chromosome. Therefore, we hypothesized that chromosomal genes had higher 
connectivity than plasmid genes.  
 
 
 
 
 
In this study, we first tested the extension of the complexity hypothesis by comparing the 
connectivity of genes on chromosomes and genes on plasmids, using 167 genomes from 161 
prokaryote species. Unlike previous study43, we used phylogeny-based statistical methods that 
controlled the impact of phylogenetic relationships. There are two reasons for doing this. First, 
species share traits descended from the common ancestor, thus cannot be considered as 
independent data points46. Second, some genes only transferred at intra-genus or intra-species 
levels, which suggested that phylogenetic relationships might further limit the transfer of lower 
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connected genes47. Therefore, controlling for phylogeny could thus provide us with a fairer 
understanding of the complexity hypothesis. We then tested whether the effect of the 
complexity hypothesis constrained cooperative genes from transferring to be on plasmids. We 
followed the approach of previous studies which have treated genes coding for extracellular 
proteins as ‘cooperative’ genes1,48–50. To determine whether cooperative genes are different 
from private genes in the relative gene connectivity between chromosomes and plasmids, we 
simultaneously examined how sociality (cooperative or private) and location (chromosome or 
plasmid) affect the connectivity of a given gene.  
 
Results 
 
Chromosomal genes are more complex than plasmids genes. 
 
We first compared the gene connectivity between chromosomal genes and plasmids genes for 
all genes in our dataset. We found that genes located on chromosomes had significantly higher 
levels of connectivity compared to genes on plasmids (Figure 2). The difference in connectivity 
between chromosomal genes and plasmid genes was significantly different from zero across 
all species, and the connectivity of chromosomal genes was higher than that of plasmid genes 
(MCMCglmm51; posterior mean = 15.135, 95% CI = 12.825 to 18.114, pMCMC < 0.001, n = 
161 species, R2 of phylogeny = 0.202; Figure 2, Table S1).  
 
This result was also robust to alternative analysis when we looked at the ratio of connectivity 
between chromosomal genes and plasmid genes instead of the difference. The connectivity of 
chromosomal genes was on average 2.579 times higher than that of plasmid genes 
(MCMCglmm; posterior mean = 2.579, 95% CI = 2.026 to 3.176, pMCMC < 0.001, n = 161 
species, R2 of phylogeny = 0.341; Table S1). This pattern of elevated connectivity in genes on 
chromosomes was also significant when we used networks with different confidence thresholds 
of protein-protein interaction (Table S1). Increasing the threshold reduced the posterior mean 
of the differences in chromosome and plasmid connectivity, and also reduced the number of 
species included (Table S1). When we looked at the individual species level, chromosomal 
genes had higher connectivity than plasmids genes in 98.8% of species (159/161), the opposite 
pattern was found only in Beijerinckia indica and Ralstonia pickettii (Figure S1, Table S4). 
 
Network size (the total number of proteins in a PPI network) could affect gene connectivity, 
which may bias our results. There is evidence that genes with the same connectivity have 
different impacts in networks of different sizes52. To examine whether network size influenced 
the connectivity of genes in our dataset, we tested whether they were correlated. We found no 
significant correlation between network size and gene connectivity (MCMCglmm; posterior 
mean = 0.000352, 95% CI = -0.000212 to 0.000994, pMCMC = 0.274, n = 161; Figure S4, 
Table S7). We also found no significant correlation between network size and difference of 
connectivity between the two replicons (Table S7), and also no significant correlation between 
network size and the ratio of connectivity (Table S7). These results suggested that network size 
did not affect our finding that the connectivity is increased in genes on chromosomes. 
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Figure 2. The relative connectivity between chromosomal genes and plasmid genes. Each 
dot represents the average connectivity of all genes in either the chromosome or plasmid(s) of 
one species. Chromosome and plasmid values of the same species are linked by a line. A solid 
line means the average connectivity of chromosomal genes is lower than that of plasmid genes, 
while a dashed line means the average connectivity of chromosomal genes is higher than that 
of plasmid genes. The two horizontal lines represent the mean for each group. For almost all 
species (159/161), chromosomal genes have a higher level of connectivity than plasmid genes. 
 
 
The prediction of the complexity hypothesis holds for cooperative genes. 
 
To determine whether genes are cooperative genes or private genes would affect their relative 
gene connectivity between chromosomes and plasmids, we examined the simultaneous 
influence of two explanatory variables in determining the connectivity of genes. The first 
explanatory variable is the location of a given gene (chromosome or plasmid), the second one 
is the sociality of a given gene (cooperative or private). We treated genes encoding extracellular 
proteins as cooperative genes, and genes encoding intracellular proteins as private genes. 
 
For our main analysis using networks with a threshold of 400 (i.e., The confidence scores of 
all protein-protein interactions in these networks are higher than 400/1000), we found a 
significant interaction between two explanatory variables, which suggested that the difference 
in gene connectivity between chromosomal genes and plasmids genes was different in genes 
of various sociality (MCMCglmm; posterior mean = -4.470, 95% CI = -8.150 to -0.982, 
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pMCMC = 0.012, n = 161 species, Table S2). Although the relative gene connectivity between 
genes on two replicons was affected by the sociality, it was still obvious that genes coding for 
extracellular proteins (cooperative genes) on chromosomes are more connected than that on 
plasmids across all species (MCMCglmm; posterior mean = 10.307, 95% CI = 7.853 to 12.750, 
pMCMC < 0.001, n = 161 species, Figure 3, Figure S7, Table S2). When we looked at the 
individual species level, we found that genes coding for extracellular proteins on chromosomes 
had higher connectivity than those on plasmids in 81.4% of species (131/161). In contrast, 18.6% 
of species (30/161) displayed the opposite pattern, where genes coding for extracellular 
proteins on plasmids had higher connectivity than that on chromosomes (Figure S2, Table S5).  
 
As a comparison, we also tested whether the prediction of the complexity hypothesis applied 
to genes that coded for intracellular proteins (private genes). We found that genes encoding 
intracellular proteins on chromosomes had significantly higher connectivity than that on 
plasmids across all species (MCMCglmm; posterior mean = 14.759, 95% CI = 13.695 to 15.654, 
pMCMC < 0.001, n = 161 species; Figure 3, Figure S7, Table S3). And the variations at the 
individual species level indicated that only 1.86% of species (3/161) displayed the opposite 
pattern, where genes coding for intracellular proteins on plasmids had higher connectivity than 
that on chromosomes (Figure S3, Table S6).  
 
When we tested the robustness of this result by performing similar analyses at networks with 
other confidence thresholds, we found consistent patterns that genes coding for extracellular 
proteins on chromosomes are more connected than that on plasmids across all networks with 
different thresholds (Table S2). We also found that the interactions between different 
explanatory variables varied across networks with different thresholds. A similar significant 
interaction was found in networks with the lowest level of confidence (150/1000). However, 
in networks with higher confidence thresholds (700/1000 & 900/1000), the interactions 
between two explanatory variables were no longer significant, which suggested that the 
difference in gene connectivity between chromosomal genes and plasmids genes has not 
changed in genes of different sociality (Table S2). 
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Figure 3. Connectivity of genes encoding extracellular proteins (cooperative) versus 
connectivity of genes encoding intracellular proteins (private). (A) cooperative versus 
private comparisons for chromosomal genes; (B) cooperative versus private comparisons for 
plasmid genes. Each dot represents the mean connectivity of all genes with certain types of 
protein products for one species. The horizontal line represents the mean for each group. Three 
species have been removed from figure 2B, because their genes on plasmids have much higher 
levels of connectivity. The complete version of Figure 2B can be found in the supplementary 
material (Figure S5). Although there were slight differences in gene connectivity between 
genes encoding extracellular proteins and genes encoding intracellular proteins, chromosomal 
genes were still more connected than plasmids genes regardless of their sociality.  
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Discussion 
 
In this study, we examined the extension of the complexity hypothesis by comparing the 
connectivity of genes on chromosomes and genes on plasmids. We found strong evidence that 
genes with higher levels of connectivity were more likely to be on chromosomes rather than 
plasmids. We then tested whether the impact of gene connectivity constrained gene encoding 
extracellular proteins (cooperative genes) from being on plasmids. We found that the prediction 
of our previous analysis could be applied to cooperative genes, because our result suggested 
that chromosomal genes were more complex than plasmids genes for cooperative genes. These 
results suggested that gene connectivity could be a factor that restricts cooperative genes from 
locating on plasmids, even though these genes are more beneficial when on plasmids.  
 
Our finding that genes on chromosomes had higher levels of connectivity was in principle 
consistent with previous studies43–45 (Figure 2). The original complexity hypothesis was 
proposed to explain why informational genes (i.e., those involved in transcription, translation, 
and related processes) are less likely to be horizontally transferred41. Subsequent studies aimed 
at testing the validity of the complexity hypothesis also focused on genes that are hypothesized 
to undergo HGT. Based on previous studies, we extended the prediction of the complexity 
hypothesis by assuming that plasmids are less likely to harbour highly connected genes. The 
rationality of making such an extension is that plasmids are known to be essential drivers of 
horizontal transfer in prokaryotic evolution2,3,12. Horizontally transferred genes, which are 
detected by the presence and absence of genes across multiple phylogenetically related 
genomes, are likely to be transferred by the movement of plasmids. Therefore, it is reasonable 
to assume that HGT genes would share similar genetic characteristics with genes on plasmids. 
In addition, our results were robust throughout all networks with different thresholds, which 
suggested that the influence of gene connectivity in determining whether genes are on 
chromosomes or plasmids was powerful. Other mobile genetic elements (MGEs) such as 
integrative conjugative elements (ICEs), phages, and transposable elements are also important 
agents of HGT and could be the focus of research for testing the complexity hypothesis53. Our 
study, however, only focused on plasmids because they are the most representative and most 
widely studied MGEs that mediate HGT.  
 
One of the advancements of our study is that we included 161 species in our analysis, including 
7 archaeal species, which is significantly larger than previous studies. This allowed us as 
universally as possible to examine the applicability of the complexity hypothesis in 
determining the gene location of both bacteria and archaea. Another advancement is that we 
controlled for the misleading effects of phylogenetic relationships among all species in our 
analysis. Due to shared ancestry, species are not independent from each other, the patterns 
displayed across multiple species are likely to be the result of evolutionary history, not the 
result of evolutionary mechanisms46,54,55. Additionally, there was evidence that 16S rRNA 
genes, which are important informational genes, only transferred at intra-genus or intra-species 
levels47. 16S rRNA genes are not necessarily to be complex. If they are not compatible in 
distant organisms because of their conservation, they are also likely to be transferred less or 
only in closely related species56. Consequently, by accounting for phylogeny, we were closer 
to delineate the effect of gene connectivity in determining gene location.  
We followed the previous studies that considered gene connectivity as a measurement of gene 
complexity. Although there was evidence that gene connectivity is a good prediction of gene 
essentiality57–59, we did not blur these two related but different concepts in the context of our 
study. A gene is considered essential if it is required for the reproductive success of a cell or 
an organism60. However, a previous test of the complexity hypothesis has shown that gene 
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connectivity rather than functional essentiality acted as a more important barrier in restraining 
HGT42. Subsequent research further claimed that gene expression level was a major 
determinant of horizontal gene transferability for some species61. In addition, other network-
based measurements such as betweenness centrality and hierarchy, have been suggested to be 
more significant indicators of gene essentiality in some cases62–64. Therefore, in our study of 
disentangling the factors regulating HGT, we focused more on the extent to which gene 
connectivity deciphered gene complexity. Our result thus cannot be interpreted as 
chromosomal genes are more essential than plasmid genes. 
 
Our next analysis suggested that gene connectivity could explain why in some species, 
cooperative genes are more likely to be on chromosomes instead of plasmids. We found that 
cooperative genes were more connected on chromosomes than on plasmids across all species 
(Figure 3). Therefore, we claimed that highly connected cooperative genes could be confined 
to stay on chromosomes, even though they could provide more cooperative benefits when on 
plasmids. However, the influence of gene connectivity on determining the location of 
cooperative genes was not as strong as that for private genes. For private genes, genes on 
chromosomes are more connected than genes on plasmids in 98.14% of species (158/161). In 
contrast, for cooperative genes, 81.4% of species (131/161) displayed the same pattern, which 
was less than that for private genes. Although in networks with a confidence threshold of 400 
or lower, the interaction between sociality and location in affecting gene connectivity was 
significant, the p-value (pMCMC = 0.012) was only slightly less than 0.05. This suggested that 
despite the relative gene connectivity between chromosomal genes and plasmids genes was 
different in genes with different sociality, such disparity was not meaningful, which was in line 
with our finding when looking at the individual level.  
 
We found that the influence of sociality on gene connectivity between chromosomal genes and 
plasmids genes varied across networks with different thresholds. When we increased the 
thresholds of networks we used (700 & 900), the interactions between two variables were no 
longer significant. The threshold of a network displays the confidence cutoff of functional 
associations between every two proteins in the network (see Methods). Considering the 
evidence of protein-protein interactions in our dataset are from diverse sources, and it is 
difficult to evaluate the reliability of interactions derived from computational inferences, the 
threshold does not perfectly represent the real confidence of a given interaction65. Nonetheless, 
we were still able to conclude that as we scrutinized the reliability of protein associations more 
and more rigorously, the relative gene connectivity between chromosomal genes and plasmids 
genes were less likely to differ between cooperative genes and private genes.    
 
Taken together, our study found strong evidence to claim that in prokaryotes, genes on 
chromosomes have higher levels of connectivity than genes on plasmids. This result supported 
and extended the original complexity hypothesis, which states that highly connected genes are 
transferred at lower rates than less connected genes. We then found a similar pattern in 
cooperative genes across different prokaryote species. Although this pattern was not as 
effective for cooperative genes as it was for private genes, the prediction of the complexity 
hypothesis could still be used to explain why cooperative genes were not overrepresented on 
plasmids as predicted by theories38–40. A natural progression of this work is to test the extension 
of the complexity hypothesis focusing on other MGEs. Further across species comparative 
studies are also required to validate whether cooperative genes are more likely to be found on 
MGEs rather than on chromosomes. By comparing the different selective pressures in 
determining the location of cooperative genes in terms of different MGEs, we would be able 
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to gain a clearer understanding of the role of HGT in affecting the evolution of prokaryotes, 
especially in affecting the evolution of cooperative traits in microbes.  
 
Methods 
 
Network Collection 
We extracted protein-protein interaction (PPI) networks from STRING database version 11.0 
65(https://string-db.org/). We used PPI networks to calculate connectivity (see Connectivity) 
for genes in our dataset. Each strain in our dataset has a corresponding network (see Database 
Matching and Genome Collection). We chose STRING because it covers the largest number 
of organisms (5090), including microorganisms that allow cross-species comparative analysis. 
In addition, STRING is a more comprehensive PPI network database. Unlike other databases 
based on either experimental66–69, or computational prediction interactions70, STRING 
integrates both of them and includes direct (physical) and indirect (functional) associations. 
This allowed us to include as many species as possible in our analysis.   
 
The evidence for each interaction in the STRING database is categorized into one of seven 
independent ‘channels’: neighbourhood, fusion, co-occurrence, co-expression, text-mining, 
experiments and databases. For each pair of interactions, a separate score is given per channel. 
A combined confidence score ranging from 0 – 1000 is denoted by combining and adjusting 
the scores from the different channels71. In our main analysis, we specified a threshold of 400 
for the combined scores of the interactions, and any interaction below this threshold would not 
be considered. 400 is a medium confidence threshold according to the STRING database. To 
check the reproducibility of our results, we also repeated our analysis by setting different 
thresholds: 150 (low confidence), 700 (high confidence), and 900 (highest confidence). The 
results at different thresholds are presented in Supplement tables. To match with PSORTdb 
database (see Database Matching and Genome Collection), we retrieved all the available PPI 
networks by using the STRINGdb package (version 2.4.0) in R65. 
 
Categorization of Genes and Annotations of Replicons 
To select genes that were putatively ‘cooperative’, we followed the methods of previous studies 
which have regarded genes with extracellular gene products as a proxy for ‘cooperative’ 
genes48–50. Although not all cooperative genes are extracellular and not all extracellular proteins 
are cooperative, any strong effect of sociality is likely to be captured by using this proxy1. We 
compiled the prediction results of the protein subcellular localization for each protein included 
in our analysis from PSORTdb 4.0 (https://db.psort.org/)72. PSORTdb was selected for its 
reliability and validity in systematically deducing both bacterial and archaeal SCLs. 
 
PSORTdb gives a final prediction of the subcellular location for each protein. For Gram-
positive bacteria, the program allocates proteins to one of four locations within the cell: 
cytoplasmic, cytoplasmic membrane, extracellular or cell wall. Many of the most well-studied 
Archaea contain the same basic components as classic Gram-positive bacteria72. For classic 
Gram-negative bacteria, proteins are assigned to one of five locations, where cell wall has been 
replaced by outer membrane or periplasmic. We excluded any proteins classified as “Unknown” 
by PSORTdb from our analysis, which accounted for 23.9% of all proteins we analyzed. 
 
The PSORTdb outputs we used also included information about bacterial and archaeal 
replicons, from which we can infer whether the genes coding for proteins of interest are on 
plasmids or chromosomes. We initially collected precomputed PSORTdb results for all 
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available genomes, including 73136 replicons belonging to 8416 bacterial and archaeal strains, 
to keep all genomes that were also in the STRINGdb with a PPI network. All the PSORTdb 
results were retrieved and compiled using GNU Wget and R. 
 
Database Matching and Genome Collection 
To compare the connectivity (see below section) of genes encoding extracellular and 
intracellular proteins, we curated a list of bacterial and archaeal strains which were in both the 
PSORTdb and STRING databases. Each organism in STRING is assigned with a unique NCBI 
taxonomy ID as a specific identifier, whereas PSORTdb uses RefSeq genome/replicon 
accession to specify the genome. We therefore matched RefSeq accession numbers from 
PSORTdb with their corresponding NCBI taxonomy ID by adopting NCBI Entrez Direct 
Command Line Tools (https://www.ncbi.nlm.nih.gov/books/NBK179288/). By doing so, we 
were able to use the NCBI taxonomy ID to extract the PSORTdb results of all genomes which 
also had a PPI network(s). To allow us to compare chromosome and plasmid genes, we only 
considered genomes with PSORTdb results that included at least one plasmid sequence. 
Specifically, for our purpose of comparing the connectivity of genes coding for extracellular 
and intracellular proteins that are on plasmids, we omitted genomes with no extracellular 
protein-coding genes on their plasmids. This gave us a list of 161 species (167 genomes), which 
included 7 archaeal species (7 genomes) and 154 bacterial species (160 genomes). 
 
For each gene in our dataset, we mapped the gene name to the STRING database identifier 
‘STRING_id’ using the ‘map’ function of the R package STRINGdb version X65. This unique 
‘STRING_id’ was used to calculate the connectivity and normalized connectivity (see 
Connectivity) for every individual gene. Genes that could not be mapped with ‘STRING_id’ 
were not included in our dataset.  
 
Connectivity 
In our analysis, we use the term gene connectivity to mean the same as the protein connectivity 
of its protein product in a PPI network. We followed previous studies to define protein 
connectivity as the number of protein-protein interactions (PPIs) in which the protein is 
embedded in the PPI network43,61. We used this definition because one fundamental assumption 
of the complexity hypothesis is that the more interactions a gene has with other genes, the more 
complex it is, and therefore the less likely the gene will be successfully transferred41.  
 
It is also noteworthy that network size (the total number of proteins in a PPI network) would 
affect gene connectivity52. Genes with the same connectivity have different impacts in 
networks of different sizes. To control the influence of network size on our across species 
analyses, we examine whether network size was correlated with the connectivity of genes in 
our dataset. We performed all calculations of connectivity using R package ‘igragh’73, and 
analogous functions written to check the package was working as expected.   
 
Statistics 
We carried out all statistical analysis and graph plotting in R (version 4.0.2). For all 
comparisons between groups that included all our species, we used the R package 
MCMCglmm51. To control for phylogenetic relationships between species in our dataset (see 
Phylogenetic Reconstruction), we used a phylogeny as random effects in our model. For each 
analysis, we used 1100000 model iterations with a starting burn-out phase of 100000, sampling 
every 1000 iterations. We then checked the reliability of all output models by looking at model 
convergence. After the model diagnoses, we reported the posterior mean, 95% Credible 
Intervals (functionally similar to 95% Confidence Intervals), and the pMCMC value (used here 
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as ‘p-value’) for each model. We also provided the R2 for models in our main analysis using 
methods described in74,75.  
 
When we looked at the patterns within each species, we used the Kruskal-Wallis test which 
tests whether samples are from the same distribution to perform all comparisons between 
groups. The results are in Supplementary tables.  
 
Phylogeny 
To control for phylogenetic relationships between our species, we used a phylogenetic tree 
including all 161 species in our dataset (Fig S6). We put together this phylogeny using the 
methods of a recent study1. The tree was based on a recently published maximum likelihood 
tree of life using 16 ribosomal protein sequences data76. This tree typically has only one 
representative species of each genus. We first extracted all branches that matched species in 
our dataset by using the R package ‘ape’77. In cases where the representative species of a genus 
was not the same as our species from the same genus, we replaced the branch tip with our 
species, since all species from the same genus are equally related to species of sister genera. In 
cases where there were two species per genus in our dataset, we used the R package ‘phylotools’ 
to directly add the second species as an additional branch into their genera78. Where there were 
more than two species within a genus in our dataset, we consulted phylogenies from the 
literature (Supplementary table X) to add any within-genus clustering of species’ branches.  
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